SCIENTIFIC REPORTS 6

Igor Khorozyan§ and Alexander Malkhasyan§§ Игорь Хорозян§ и Александр Малхасян§§

ECOLOGY OF THE LEOPARD (PANTHERA PARDUS) IN KHOSROV RESERVE, ARMENIA: IMPLICATIONS FOR CONSERVATION.

Экология и охрана леопарда *(Panthera pardus)* в Хосровском заповеднике Армении.

This work should be quoted as follows / Il testo deve essere citato come segue:

Igor Khorozyan§* And Alexander Malkhasyan§§ (2002). Ecology of the leopard (Panthera pardus) in Khosrov Reserve, Armenia: implications for conservation - Scientific Reports n. 6 - Publisher Società Zoologica "La Torbiera", Italy.

Игорь Хорозян§* и Александр Малхасян§§ (2002). Экология и охрана леопарда (Panthera pardus) в Хосровском заповеднике Армении. - Scientific Reports n. 6 - Publisher Società Zoologica "La Torbiera", Italy.

All rights reserved. No part of this work may be reproduced or distributed in any form or by any means, or stored in a data base or retrievial system without written permission of the publisher. I diritti d'autore sono riservati a norma di legge. Nessuna parte di questo lavoro può essere riprodotta o distribuita in alcuna forma o con alcun mezzo, o archiviata in un sistema di data base, senza un'autorizzazione scritta dell'autore.

Printed by/ Stampato da:

Modulgrafica Forlivese - Forli (FC) - Italy

©Copyright Società Zoologica "La Torbiera" Agrate Conturbia (Novara), Italy

Printed in June 2003 / Finito di stampare in Giugno 2003

§ Youth Ecological Group/Armenian Leopard Conservation Society, Mashtotz Ave. 48/17, Yerevan 375009, Armenia. E-mail: leopard_am@yahoo.com

§§ Ministry of Nature Protection, Moscovian Str. 35, Yerevan 375002, Armenia.

* To whom all correspondence should be sent.

§ Молодежная экологическая группа/Армянское общество охраны леопарда, пр. Маштоца 48/17, Ереван 375009, Армения. E-mail: leopard_am@yahoo.com

§§ Министерство охраны природы, ул. Московян 35, Ереван 375002, Армения.

* Контактное лицо,

Fronte cover / Copertina : Leopard (Panthera pardus saxicolor) Photo / Foto : Archivio La Torbiera

Summary

Khosrov Reserve is the leopard (Panthera pardus) stronghold in Armenia where this predator needs to function a flagship species to justify nature conservation goals and tactics. Local leopards live in extremely rugged and cliffy terrain and were never studied before. For the first time, we describe the following aspects of ecology and conservation of this predator in reserve: 1. Feeding habits, 2. Predator-prey relationships, 3. Feeding competition, 4. Distribution and habitat use, 5. Implications for conservation. The leopard diet consists principally of the bezoar goats (Capra aegagrus) which make 91.5% frequency of occurrence in scats and 92.5% of total live biomass consumed. Female goats are most frequently taken and positively selected by the leopards. The study embraced the area of reserve and its vicinities of total area ca. 780 km^2 ; according to very approximate guesstimates, the leopard numbers in this area are no more than 10 individuals. To remain the staple prey, as evident from dietary analysis of the leopard scats, the bezoar goat population should number 900-3000 animals. This information contradicts the published data that no more than 700 bezoar goats are living in all Armenia what requires for in-depth up-to-date census of these ungulates in Khosrov Reserve and other regions of the country. Feeding competition with brown hears (Ursus arctos) and Eurasian lynx (Lynx lynx) is negligible due to a strong separation in habitat use and food habits. The most serious threat to local leopards is the "edge effect"; the measures to minimize it and make leopard conservation workable are discussed.

Аннотация.

Хосровский заповедник является опорным пунктом леопарда (Panthera pardus) в Армении, где этот хищник должен служить видом-символом для обоснования целсй и тактики охраны природы. Местные псонарды живут в чрезвычайно перессченной в скалистой местности и никогда ранее не выли специально изучены. Впервые мы описываем следующие аспекты экологии и охраны этого хищника в заповеднике: 1. Питание, 2. Взаимоотношения хищник-жертва, 3. Пищевая конкурсиция, 4. Распространение и использование местообитаний, 5. Охранные меры. Питание леопарда состоит в основном из всзоарового козла (Capra aegagrus), который составляет 91,5% частоты встречаемости в экскрементах и 92,5% общей потребленной живой биомассы. Самки везоара наиболсе часто поедаются и положительно избираются леопардами. Исследованиями охвачена территория заповедника и прилегающие к нему участки общей площалью около 780 км²; но весьма приблизительной оценкс, численность леопарда на превышает здесь 10 осовей. Чтобы этот вид оставался основным видом добычи, как это видно из нашего анализа питания леонарда, популяция везоаровых козлов должна составлять 900-3000 особей. Эта информация противорсчит опубликованным данным, что численность везоаровых козлов во всей Армении составляет не волее 700 особей, что требует проведения серьезных исследований по современной оценке численности этих копытных в Хосровском заповеднике и других регионах респуслики. Пищевая конкуренция с вурым медведем (Ursus arctos) и европейской рысью (Lynx lynx) ничтожна ввиду сильного разделения в использовании местообитаний и питании. Наиболее серьезной опасностью для местных леопардов является "краевой эффскт"; мы обсуждаем меры по его снижению и эффсктивной охранс леопарда.

Fig. 1. Location of Khosrov Reserve in Armenia. Рис. 1. Местоположение Хосровского заповедника в Армении.

INTRODUCTION

Armenia is located at the junction of Near East and Europe within the "Caucasus" biodiversity hotspot and a "Vulnerable" eco-region recognized by Conservation International and WWF. The leopard (*Panthera pardus*) has been the rarest and most charismatic species of Armenia's fauna which is listed as "endangered" in the national Rcd Data Book and in 2000 IUCN Red List of Threatened Species. Its national stronghold is Khosrov Reserve which enjoys the richest national biodiversity (Fig. 1).

This predator needs to become a target of single-

ВВЕДЕНИЕ

Армения расположена на стыке Ближнего Востока и Европы в пределах Кавказского региона концентрации вноразнообразия и уязвимого экорегиона, признанных со стороны Conservation International и WWF. Леопард (Panthera pardus) является нанболее редким и внечатляющим видом фауны Армении, находящимся в национальной Красной книге и Красном списке угрожаемых видов МСОП 2000 г. Его опорным пунктом в стране выступает Хосровский заповедник, содержащий самые богатые национальные ресурсы биоразнообразия (рис. 1). species approach of biodiversity conservation in Khosrov Reserve which, by definition, would capture endangered charismatic and flagship species to justify the existence of this protected areas for public benefits and to provide economic leverage to negotiations between the government, policymakers, conservationists and scientists for protection of wilderness. Such an approach indirectly helps to protect much broader levels of biodiversity because the protection of this species can: (a) benefit other species by virtue of its broad geographic range ("umbrella" species); (b) maintain ecosystem integrity by virtue of its role in shaping the characteristics or function of its habitat ("keystone" species); (c) serve as a gauge of the health of the ecosystem ("indicator" species); and (d) help increase public awareness by protecting high-profile or "flagship" species (Bloomgarden, 1995).

Despite the leopard is listed in national Red Data Book and its conservation is being implied by the national legislation ("Law on specially protected areas" 1991 and "Law on animal world" 2000), the leopard is not studied in Armenia and no any special research of this extremely elusive and rare species was undertaken ever before.

The cryptic and nocturnal behavior of many mammalian species, especially big cats, makes scientists desperate in obtaining information about the status of their populations which are generally small and thinly distributed over the vast areas. In this case, non-invasive techniques which do not require the direct contact with study objects (e.g., based on a thorough analysis of scats) may be very useful and even indispensable (Kohn and Wayne, 1997). The scats can tell us much about the feeding habits, predator-prey relationships, feeding competition, distribution and habitat use, and all these aspects are described in this publication.

The status of prey base and predator-prey relationships has been one of the most important aspects underlying survival of any predator population. The leopard specializes in medium-size ungulates and a wide spectrum of small wildlife and may verge on extinction or disappear wherever these prey resources become dwindled (Nowell and Jackson, 1996). Prey depletion is often associated with another danger to the leopard, human

Этот хищник должен стать целевым овъектом одновидового подхода в охране виоразнообразия в Хосровском заповеднике который, по определению, делает упор на вымирающие и замечательные виды-символы для овоснования существования охраняемых территорий для общественного влага и для обеспечсния экономической свалансированности переговоров между правительством, политиками, экологамиспециалистами в овласти охраны дикой природы. Такой подход косренно помогает защитить гораздо вольший объем вноразноовразия, поскольку охрана вида-символа можст: (а) охватывать другие виды ввиду широкой области распространения (вид-покровитель); (в) поддерживать целостность экосистемы ввиду свой роли в обеспечении условий или функций местоовитаний (ключевой вид); (в) служить датчиком влагополучия экосистемы (вид-индикатор); и (г) помочь в овщественной уровня поднятии информированности в ходе изучения видовсимволов (Bloomgarden, 1995).

Несмотря на то, что леопарл включен в Красную книгу республики и его охрана и одразуменается нациопальным законодательством ("Закон об особо охраняемых территориях" 1991 г. и "Закон о животном мире" 2000 г.), леопард в Армении практически не изучен, никаких специальных исследований этого чрезвычайно скрытного и редкого вида никогда ранее не проводилось.

Скрытный и ночной образ жизня многих видов млеконитающих, осовенно крупных кошек, вызывает отчаяние у ученых, пытающихся получить информацию о состоянии их обычно малых и разреженных популяций, овитающих на овширных территориях. В этом случас, ненивазионные методы, не трекующие прямого контакта с объектом исследования (напр., основанные на подровном изучении экскрементов), могут выть очень полезны и дажс незаменямы (Kohn and Wayne, 1997). Экскременты могут сказать нам многое о питании, хищник-жертва, взаимоотпошениях распространении и использовании местообитаний, и все эти аспекты описаны в данной пувликации.

Состояние пищевой вазы и взаимоотношений

7

persecution, as it causes a habit to kill domestic livestock (Lukarevsky, 2001a) and commercially valuable wildlife, e.g. sika deer *(Cervus nippon)* (Pikunov and Korkishko, 1992). The leopard is also susceptible, but in much lesser extent than other big cats, to feeding competition with stronger and/or more numerous rivals for common prey resources and uses different spatio-temporal mechanisms to avoid competition (Karanth and Sunquist, 1995; Ramakrishnan et al., 1999).

The leopard is notorious for its ability to live near people and stay the invisible "phantom" roaming over wide areas, thus creating the conflict with humans for space (Nowell and Jackson, 1996). So, information on predator spacing and spatial interactions with rustic communities is unavoidably needed to develop workable conservation programs, particularly in protected areas.

In this publication, we make the first scientific effort to assess feeding habits and predator-prey relationships of local leopard population and its feeding competition with brown bears (Ursus arctos) and Eurasian lynx (Lynx lynx) in Khosrov Reserve. The fourth aspect studied by us is habitat use by leopards and their distribution as assessed by GIS mapping and analysis of scat distribution. Further, we consider implications of all these issues for the heopard conservation in Khosrov Reserve.

MATERIAL AND METHODS

1. Study area

Khosrov Reserve, established in 1958, occupies the area of 258.6 km² (as in our GIS map) southcast of Armenia's capital Yerevan (Fig. 1). It sits astride the south-western slopes of the Geghama ridge and has very steep relief: declivity $<20^{\circ}$ makes 15%, $20-30^{\circ}$ - 19% and 30° - 66% of total area. The territory is entirely an array of highland plateaus, volcanic massifs and mountain chains interspersed by very dense network of basic and branch gorges. The climate is dry continental, with hot summers (max. 38° C) and cold winters (min. -25° C). Vegetation period is 190-210 days per annum. Average annual precipitation is 400-600 mm, seldom хищник-жертва является одним из основных факторов, лежащих в основе выживания полуляции любого хищника, в частности леопарда. Леопард специализируется на конытных среднего размера и широком спектре мелких животных и может находиться на грани исчезновения или воовще исчезнуть там, глс эти пищевые ресурсы истощены (Nowell and Jackson, 1996). Истонение нищевых ресурсов часто приводит к привычке увивать домашних животных и коммерчески ценных животных, например, пятнистых оленей (Cervus nippon) и, как следствие, к преследованию со стороны человска (Lukarevsky, 2001a; Pikunov and Korkishko, 1992). Леопард также восприимчив, хотя и в гораздо меньшей мере, чем лругие крупные кошки, к нищевому соперянчеству с волее сильными и/или волее многочисленными хищниками за общие пищевые ресурсы и использует различные пространственновременные механизмы для его извежания (Karanth and Sunquist, 1995; Ramakrishnan et al., 1999).

Леопард широко известен из-за своей способности жить около людей и оставаться невидимым "призраком-бролягой", что принодит к конфликту с людьми за пространство (Nowell and Jackson, 1996). Поэтому, информация по пространственным аспектам распределения и взаимоотношениям с сельским населением остро необходима для разработки эффективных программ охраны, в том числе на охраняемых территориях.

В данной пувликации, мы делаем первую попытку оценить питание и взаимоотношения хищник-жертва в местной популяции леопарда, а также его пищевую конкуренцию с курым медведем (Ursus arctos) и евронейской рысью (Lynx lynx) в Хосровском зановеднике. И, пакопец, методом ГИС проведены картирование и анализ распределения экскрементов в пространстве и сделаны выводы о распространении и использовании леопардом местоовитаний. Далее, мы рассматриваем важность всех этих аспектов с точки зрения охраны леопарда в Хосровском заповеднике.

Fig. 2B

Fig. 2. The leopard (Panthera pardus) habitats in Khosrov Reserve. 2A – General bird's-eye view (Khachadzor district); 2B – Juniper sparse forest on the stony substrates along the ridge top (vicinities of Eranos Mt.). Photos by I. Khorozyan. Рис. 2. Местообитания леопарла (Panthera pardus) в Хосровском заповеднике. 2А – Общий вид с высоты птичьего полета (урочище Хачадзор), 2В – Можжевсловое редколесье на каменистых груптах вдоль гребня хребта. Фотографии И. Хорозяна. up to 800 mm, maximum of which falls in April-June and minimum - in July-August. Main sources of water are Azat and Vedi rivers with tributaries, as well as numerous freshwater and mineral springs.

Vegetation is mainly xerophilic grasslands (64% of all coverage area), but contribution of thickets (20%) and sparse forests (16%) is also significant. Biodiversity of this protected area is very rich (Grigorian, 2000). Floristic composition comprises about 1,800 species of vascular plants from 560 genera and 95 families, i.e. more than half of all plant species found in Armenia (3,200). Vertebrate fauna is represented by 7 species of fish (23% of all recorded in the country), 5 amphibians (63%), 30 reptiles (57%), 130 birds (37%) and 40 mammals (48%) (Gabrielian et al., 1990; Biodiversity of Armenia, 1999).

The leopard habitat comprises precipitous cliffy terrain shaped by intense processes of weathering and denudation as "islands" of rocky massifs inside the areas of dry meadow grassland vegetation and thickets (juniper/beecb/oak sparse forests and phryganoid communities of xerophytes) (Fig. 2).

МАТЕРИАЛЫ И МЕТОДЫ

1. Территория исследования

Хосровский заповедник, созданный в 1958 г., занимаст площадь 258.6 км² (согласно нашей ГИС карте) к юго-востоку от столицы Армении г. Еревана (рис. 1). Он занимает юго-западные огроги Гегамского хревта и имеет очень нересеченный рельеф: склоны <20⁰ занимают 15% территории, 20-30° - 19% н 30° - 66%. Территория целиком состойт из высокогорных плато, вулканических массивов и горных хревтов, пересеченных плотной сетью основных и воковых ущелий. Климат сухой континентальный, с жарким летом (макс. 38°С) и холодной зимой (мин. -25°С). Вегетационный период 190-210 дней в году. Среднегодовой объем осадков составляет 400-600 мм, редко до 800 мм, из которых максимум выпадает в апреле-июне и мнинмум в июле-августе. Основные источники воды - рр. Азат и Веди с притоками, а также множество пресноводных и минеральных источников.

Растительность в основном представлена ксерофильными стенями (64% всей территории), но роль зарослей (20%) и редколссий (16%) также значительна. Биоразнообразие заповедника очснь богато (Grigorian, 2000). Флора насчитывает около 1800 видов сосудистых растений из 560 родов и 95 семейств, т.е. более половины всех видов растений обнаруженных в Армении (3200). Фауна позвоночных представлена 7 видами рыб (23% всех найденных в стране), 5 земноводных (63%), 30 пресмыкающихся (57%), 130 птиц (37%) и 40 млскопитающих (48%) (Gabrielian et al., 1990; Biodiversity of Armenia, 1999).

Мсстообитания леопарда включают пересеченную скалистую местность, сформировавшуюся в результате интенсивных процессов выветривания и обнажения, в виде "островов" скалистых массивов внутри областей с сухостепной растительностью и зарослями (можжевелово-буково-дубовые редколесья и фригановлные сообщества ксерофитов) (рис. 2).

2. Collection of scats

The leopard seats were unambiguously identified by their smell, color, consistency and general aspect compared with those left by brown bears and Eurasian lynx with which the leopards may co-exist. The positive signs of leopard origin of the scats were characteristic "segmented" shape (mcan diameter ca. 2.7 cm with range 2.0-3.0 cm, pointed ends and many lobes) (Johnson et al., 1993; Ray and Sunquist, 2001) and place of scat deposit (propensity to use trails along the ridge tops and mark them with scats when traveling) (Gasparyan and Agadjanyan, 1974; Karanth and Sunquist, 1995; Lukarevsky, 2001a; Ray and Sunquist, 2001). For obtaining additional strong evidence that the seats were produced just by leopards and not by other carnivores, we searched for signs (footprints, prey remains, etc.) and talked to local people (reserve rangers and livestock breeders) about the cat sightings. As a comparative material, we used the scats produced by a Persian leopard in the Yerevan Zoo, Armenia (male Zombis, studbook No. 433) which always met the above-mentioned criteria of scat structure.

The scats were collected in October 2000 -January 2002 period in Garni (n = 54), Khachadzor (n = 25) and Khosrov (n = 122) districts of Khosrov Reserve where most leopard records come from. For this, we used the monthly trips of duration 1-1.5 weeks each (sampling effort: Garni district mean = 8.5 days, SD = 2.1, n = 4; Khosrov district - mean = 9.0 days, SD = 2.5, n = 4; Khachadzor district - mean = 7.0 days, SD = 0, n = 4). The sampling efficiency (number of scats collected per trip) was: Garni district - mean = 14.5, SD = 9.6, n = 4; Khosrov district – mean = 30.7, SD = 18.5, n = 4; Khachadzor district – mean = 6.2, SD = 7.0, n = 4. In terms of the number of scats collected per district and season, the mean values were 40.7 (SD = 28.3, n = 3) for Khosrov district, 12.5 (SD = 4.5, n = 2) for Khachadzor district and 27.0 (SD = 1.0, n = 2) for Garni district.

The feces of brown bears (n = 236) and lynx (n = 94) were collected in 2001-2002 for identification of possible food niche overlap between these large carnivores and leopards.

2. Свор экскрементов

Экскременты леонарда однозначно идентифицировались по их запаху, цвсту, консистенции и общему виду в сравнении с фскалиями, оставленными бурыми медведями и рысями, с которыми леопарды могут сосуществовать. Положительными знаками принадлежности экскрементов леопарду выли их характерная сегментированная форма (средний днаметр около 2.7 см, размах 2.0-3.0 см, заостренные концы и множество долек) (Johnson et al., 1993; Ray and Sunquist, 2001) и место отложения экскремента (склопность к использованию трои вдоль гревней хревтов и их маркированию экскрементами во время передвижения) (Gasparyan and Agadjanyan, 1974; Karanth and Sunquist, 1995; Lukarevsky, 2001a; Ray and Sunquist, 2001). Для получения дополнительных доказательств того, что экскременты выли отложены именно леопардами, а не другими хищниками, мы искали другие признаки (следы, остатки довычи и др.) и разговаривали с местными жителями (лесничие заповедника и пастухи) о встречах с леопардом. В качестве сравнительного материала, мы использовали экскременты, отложенные переднеазнатеким леопардом в Ереванском зоопарке, Армения (самец Зомви, племенной No. 433), которые всегда отвечали вышеуказанным критериям структуры экскрементов.

Экскременты собирались в период октяврь 2000 г. - январь 2002 г. в урочищах Гарии (n = 54), Хачадзор (n = 25) и Хосров (n = 122) Хосровского заповедника, где зарегистрировано вольшинство встреч с леопардом. Для этого, мы организовывали сжемесячные поездки, каждая продолжительностью 1-1.5 недели (усилие провоотвора: урочище Гарни - среднее 8.5 дней, SD = 2.1, n = 4; Хосров – среднее 9.0 дней, SD = 2.5, n = 4; Хачадзор - среднее 7.0 дней, SD = 0, n = 4). Эффективность провоотвора (кол-во пров экскрементов на поездку) составляла: Гарни – среднее 14.5, SD = 9.6, n = 4; Хосров - среднее 30.7, SD = 18.5, n = 4; Хачадзор – среднее 6.2, SD = 7.0, n = 4. B виде количества экскрементов собранных на урочище и сезон, средние величины

3. Feeding habits

In our study, only fecal analysis was used for identification of leopard prey base in Khosrov Reserve, as other methods (tracking spoor, opportunistic and direct observations, and radiolocation) (Mills, 1992) are either seasonally biased towards late fall - early spring (tracking) or technically unfeasible here in highly mountainous conditions. The felids have very short gastrointestinal transit times, with undigested prey tissues often present in scats, what makes determination of dietary spectrum of a predator species from prey remains in fecal material a reliable technique. Also, the prey hair remain generally undamaged in leopard scats and serve a favorite tool in determination of leopard diet (Mills, 1992; Ramakrishnan et al., 1999).

To determine whether our scat sample size (n =201) is sufficient, we have used a method by Mukherjee et al. (1994) who studied the effect of scat sample size on frequency of occurrence in scats Fi of a given prey species and identified the minimum reliable sample size (MRSS) as that which does not cause any further change in a prey F₁ with increase in sample size. We randomly took 10 ever-increasing scat samples (n = 21, n = 23, n = 26, n = 29, n = 34, n = 34n = 41, n = 50, n = 66, n = 101 and n = 201) and checked the corresponding changes in F_i of the leopard staple prey in Khosrov Reserve, the bezoar goat (Capra aegagrus), in each sample. The results are illustrated in Fig. 3: already 20 samples are sufficient to adequately represent the occurrence of this prey in the leopard diet which stays steady-state regardless of sample size. Such a small value of MRSS is caused by monophagy of local leopards, and wherever the leopard diet is diverse the MRSS makes 80 scat samples (Mukherjee et al., 1994). As known from literature, the sample size of leopard составляли 40.7 (SD = 28.3, n = 3) для Хосровского урочища, 12.5 (SD = 4.5, n = 2) для Хачадзора и 27.0 (SD = 1.0, n = 2) лля Гарии.

Фекалии Бурых мелведей (n = 236) и рыссй (n = 94) были собраны в 2001-2002 гг. для определения возможного перекрывания нищевых ниш между этими хищниками и леопардом.

3. Питание.

В нашем исследовании, использовался только фскальный анализ определения структуры питания леопарда в Хосровском заповеднике, т.к. другие методы (тропление, случайные или прямые наблюдения, радиослежение) (Mills, 1992) или сезонно смещены на период конец оссни-начало весны (тропление), или технически нсосуществимы в местных высокогорных условиях. Кошачьи имсют очень короткое время прохождения нищи через желудочно-кишечный тракт и испереваренные остатки часто присутствуют в их экскрементах, что делает определение структуры питания хищников за счет остатков добычи в фскалнях надежным методом. Кроме того, волосы довычи в экскрементах леонарда почти всегда остаются нсповрежденными и служат излювленным инструментом в изучении питания вида (Mills, 1992; Ramakrishnan et al., 1999).

Чтовы определить, является ли размер нашей выворки экскрементов (n = 201) достаточным, мы использовали метод Mukherjee et al. (1994) по оценке влияния размера выворки пров на частоту встречаемости вида довычи в экскрементах Fi и определяли минимальный надежный размер выворки (МНРВ) как тот, при котором не происходит дальнейшего изменения в F₁ добычи с увеличением размера выворки. Мы случайно взяли 10 возрастающих выворок (n = 21, n = 23, n = 26, n = 29, n = 34, n = 41, n = 50, n = 66, n = 100101 н п = 201) и проследили за соответствующими изменениями в Fi основной довычи леонарда в Хосровском заповеднике, везоарового козла (Capra aegagrus), в каждой выпоркс. Результаты ноказаны на рис. 3: уже 20 пров достаточно для адскватной презентации встречаемости этой

Fig. 3. The relationships between the sample size of the leopard scats (n) and the frequency of occurrence of the bezoar goat (Capra aegagrus) in scats (Fi, %) in Khosrov Reserve.

scats used in the dietary studies varies from n = 9 to n = 535 (mean $n = 156.7 \pm 36.5$, No. references = 14).

Collected leopard scats were analyzed for undigested prey residues (hairs, bones and claws) through the sample drying and storage in 70% alcohol and consequent identification of prey species. Wherever the hairs were studied, 20 hairs were randomly chosen from a scat as a minimum reliable indicator and investigated for prey species (Mukherjee et al., 1994). The prey residue composition of the leopard scats was extrapolated in terms of the prey frequency of occurrence in scats Fi calculated by equation (Karanth and Sunquist, 1995; Mizutani, 1999; Pikunov and Korkishko, 1992; Ramakrishnan et al., 1999):

$$F_i = n_i \, 100\%/N$$
 (1)

where n_i is the number of fecal samples (scats) where a given i-th prey species' residues occur and N is the number of all fecal samples. Distribution of F_i is illustrated in Fig. 4 and Fig. 5. We do not consider the seasonal variation of the leopard diet, as in most cases we failed to determine the scat age due to high insolation of habitat and high rate of Рис. 3. Соотношение между размером выборки пров экскрементов леопарда (n) и частотой встречаемости безоарового козла (*Capra aegagrus*) в экскрементах (F_i, %) в Хосровском завовелнике.

довычи в питании леопарда, которая остается постоянной независимо от размера выворки. Такая невольшая величина МНРВ вызвана монофагисй местных леопардов, и там, гле питание леопарда разпообразно, МНРВ составляет уже 80 проб экскрементов (Mukherjee et al., 1994). Как известно из литературы, размер выборки экскрементов леопарда, использованных в исследованиях по питанию, варьирует от n = 9 до n = 535 (среднее $n = 156.7\pm36.5$, кол-во ссылок = 14).

Собранные экскременты леопарда анализировались на предмет содержания испереваренных остатков добычи (волосы, кости и когти) методом сушки проб и хранения в 70% синрту и последующего определения видов добычи. Когда неследовались волосы, 20 волос случайно отбирались из каждого экскремента как минимальный индикатор надежности и исследовались на предмет видовой принадлежности (Mukherjee et al., 1994). Состав остатков добычи в экскрементах леопарда экстранолировался в виде частоты встречаемости вида добычи Fi, вычисленной по урависнию natural desiccation of scats.

The bezoar goat hairs in the leopard scats were attributed to sex/age categories (adult males, adult females and juveniles) by means of their comparison with reference collection and with hairs left in the wild on stones or thorny bushes by fleeing animals in which sex and age (adult/juvenile) were known or casily identifiable on sight. The male and female hairs are stiff and thick, especially in aged males, but their color differs: in males it varies from grayishbrown to deep brown and black, and female hairs are sand-colored or white with minimum number, if any, of dark hairs. The stiff hoary hairs, like fishing line, can belong only to adult males. The juvenile hairs are snow-white or light beige and are very soft and thin.

The parameter of F_i may be misleading when prey is disproportionably represented in scats (small prey - frequently taken with low biomass input and big prey - seldom taken with significant biomass input). As a tool of balancing correction, we used equation from Karanth and Sunquist (1995), Mizutani (1999) and Oli (1994):

$$r_i = n_i (1.980 + 0.035 w_i)/w_i$$
 (2)

where r_i is number of individuals of i-th prey killed by leopards, n_i is defined above and w_i is average live body mass of i-th prey taken. Based on this equation, we estimated the % of total number killed (R_i) and % of total live biomass consumed (B_i) and presented them in Table 1 and Fig. 5.

The values of w_i (Table 1) were retrieved from Dal (1951), Karanth and Sunquist (1995), Mizutani (1999) and Oli (1994).

Selectivity of leopard predation for sex/age categories of the bezoar goats was assessed by Ivlev's selectivity index D (Okarma et al., 1997):

$$\mathbf{D} = (\mathbf{f}_{\mathbf{E}} - \mathbf{f}_{\mathbf{L}})/(\mathbf{f}_{\mathbf{E}} + \mathbf{f}_{\mathbf{L}} - 2\mathbf{f}_{\mathbf{E}}\mathbf{f}_{\mathbf{L}}) \qquad (3)$$

where f_E is fraction of a given sex/age category among the prey caten by leopards, and f_L is fraction of a given sex/age category among the prey living. In this study, f_L was 0.324 for adult males, 0.313 for adult females and 0.363 for juveniles as given in Dał (1951). Distribution of selectivity for prey (Karanth and Sunquist, 1995; Mizutani, 1999; Pikunov and Korkishko, 1992; Ramakrishnan et al., 1999):

$$F_i = n_i 100\%/N$$
 (1)

где пј является количеством пров экскрементов, содержащих остатки вида i, а N является овщим количеством всех проб. Распределение F₁ показано на рис. 4 и 5. Мы не рассматриваем сезонного изменения питания леопарда, т.к. в вольшинстве случаев нам не удавалось определить возраст экскрементов ввиду сильной инсоляции местообитания и высокой степени естественного иссущения экскрементов. Волосы безоаровых коздов в экскрементах леопарда классифицировались по половозрастным классам (взрослые самцы, взрослые самки и молодые особи) посредством их сравнения с коллекционным материалом и волосами, оставленными в природе на камнях или колючем кустарнике узегающими животными, у которых пол и возраст выли известны или легко определяемы на глаз. Волосы самцов и самок. упругие и толстые, особенно у старых самцов, но их окрас отличается: у самцов он варьирует от серо-вурого до темно-коричневого и черного, а волосы самок песочного окраса или велые с минимальным количеством, если есть, темпых волос. Твердые седые волосы, похожие на леску, могут принадлежать только старым самцам. Волосы молодых особей чисто-белые или светновежевые и очень мягкие и тонкие,

Параметр F; может внести в завлуждение, если добыча пепропорционально представлена в экскрементах (малая довыча - часто поедается, но малый вклад биомассы и большая добыча – редко поедается, но большой вклад биомассы). В качестве балансирующей корректировки, мы использовали уравнение из Karanth and Sunquist (1995), Mizutani (1999) и Oli (1994):

 $r_i = n_i (1.980 \pm 0.035 w_i)/w_i$ (2)

где гј - число осовей нида і, довытых леопардом, nj – см. выше, а wj – средний живой вес осови вида і. На основе этого уравнения, мы оценили % овщего добытого количества жертвы (Rj) и %

Fig. 4. Frequency of occurrence of different prey species (F_i , %) in the leopard scats in Khosrov Reserve.

Рис. 4. Частота встречаемости различных видов жертв (F_i, %) в экскрементах леопарда в Хосровском заповеднике.

Fig. 5. Distribution of the frequency of occurrence in scats (%) (F_i, 1) and % of total live prey biomass consumed (B_i, 2) of the bezoar goats in different areas of Khosrov Reserve. Districts: A – Garni district, B – Khosrov district, C – Khachadzor district. Prey species: M – male bezoars, F – female bezoars, J – juvenile bezoars. Рис. 5. Распределение частоты встречаемости в экскрементах (%) (Fi, 1) и % общей потревленной живой бномассы (Bi, 2) всзоарового козла в различных областях Хосровского завоведника. Урочища: А – Гарин, В – Хосров, С – Хачалзор. Добыча: М – самцы безоара, F – самки безоара, J – молодые особи.

Table 1. Number and biomass of prey killed by the leopards (Panthera pardus) in Khosrov Reserve.

Prey item, i вид довычи	Live body mass in kg, wi живой вес, кг	No. individuals killed, rj кол-во добытых особей	% of all r _i , Ri - % BCEX ri	Live biomass consumed, bi = rj wi потребленная живая биомасса	% of total bj, Bj % всех bj
Male bezoars самцы везоара	37	5.0	7.4	185.0	31.0
Female bezoars самки	28	9.6	14,2	268.8	45.1
Juvenile bezoars молодые	15	6.5	9.6	97,5	16.4
Wild boars кабаны	37	0.4	0.6	14.8	2.5
European hares зайцы-русаки	4	6.4	9.5	25.6	4.3
Rodents грызуны	0.1	39.7	58.7	4.0	0.7
Total итого	-	67.6	100.0	595.7	100.0

Тавл. 1. Количество и вномасса жертв, довытых леопардом (Panthera pardus) в Хосровском заповеднике.

sex/age categories is depicted on Fig. 6. The statistical significance of differences between the D's of the sex/age categories was tested by standard Student's t-test in Microsoft® Excel 2000.

4. Predator-prey relationships

Information on the following parameters was used: approximate guesstimates of the leopard numbers in Khosrov Reserve and adjacent areas, daily prey consumption rates, live body mass, proportion of edible biomass in whole prey body mass and predator-prey ratios in food-rich habitats (Anonymous, 1998; Gasparyan and Agadjanyan, 1974; Goszczynski, 1986; Kasabyan, 2001; Khorozyan, 1999; Lukarevsky, 2001b; Mizutani, общей потребленной живой биомассы (Bi) и представили их в табл. 1 и рис. 5.

Величины wi (тавл. 1) выли взяты у Dal (1951), Karanth and Sunquist (1995), Mizutani (1999) и Oli (1994).

Извирательность питавия леопарда к половозрастным классам везоаровых кознов выша оценена посредством индекса извирательности Ивлева D (Okarma et al., 1997):

$$D = (f_E - f_L)/(f_E + f_L - 2f_E f_L)$$
 (3)

где fE — доля данного класса среди овщего содержания вида-жертвы в питании леопарла, а fL – доля данного класса в живущей копуляции вида-жертвы. В данном исследования, fL составляла 0.324 для взрослых самцов, 0.313 для 1999; Okarma et al., 1997; Oli, 1994; Stander et al., 1997; Walker, 1994). The values of percentage of male, female and juvenile bezoar goats in total live biomass consumed (Bi) by the leopards in Khosrov Reserve were used as in Table 1.

5. Feeding competition

Dietary composition of the scats of brown bears and lynx was determined exactly as in the leopard scats using equation 1 shown above and compared with the leopard diet by means of equation 4 that was suggested by Slobodchikoff and Schulz (1980) and used successfully elsewhere (Ray and Sunquist, 2001). Among the food items of bears, only those occurring also in leopard diet were identified for species.

$$LP = FLi FPi/[(FLi)^{2} (FPi)^{2}]^{1/2}$$
 (4)

взрослых самок и 0.363 для молодых осовей, как указано у Dal (1951). Распределение избирательности к половозрастным классам жертвы показано на рис. 6. Статистическая достоверность различий между D различных классов проверялась методом стандартного tтеста Стьюдента в среде Microsoft® Excel 2000.

4. Взаимоотношения хищник-жертва

Использовалась информация по следующим параметрам: оценочная численность леопарда в Хосровском заповеднике и на прилегающей территории, суточная порция поедаемого мяса, живой вес, соотношение съедовной вномассы к овщему весу тела жертвы и соотношения хищникжертва в экосистемах, вогатых пищей (Anonymous, 1998; Gasparyan and Agadjanyan, 1974; Goszczynski, 1986; Kasabyan, 2001; Khorozyan, 1999; Lukarevsky, 2001b; Mizutani,

Fig. 6. Selectivity for sex/age categories of the bezoar goats by the leopards in Khosrov Reserve as assessed by Ivlev's selectivity index D. Districts: A - Garni, B - Khosrov, C - Khachadzor, D - total.

Рис. 6. Извирательность к половозрастным классам везоарового козла со стороны леопарда в Хосровском заповенике, согласно оценке индекса извирательности Ивлева D. Урочница: А. Гарии, В – Хосров, С. Хачадзор, D – в целом. where LP is the index of food niche overlap between the leopards (L) and other predators (P), FLi and FPi are frequencies of occurrence of the i-th food item in diet of leopards and predators, respectively. Index varies from 0 (complete dietary isolation) to 1 (identity of food niches).

6. Distribution and habitat use

In May-July 2002, the geographical coordinates (position fixes) and elevation of all scat and track sites were determined by handheld Magellan 310 GPS Satellite Navigator (Magellan Corp., San Dimas CA, USA) and then plotted on the GIS landscape map of Khosrov Reserve produced at the Center for Ecological Studies, Armenia by means of ESRI ArcView® GIS 3.2a software (licensed to Ecocenter, product ID 843171107035). Distribution of scats through the altitudinal landscape belts in Khosrov Reserve was assessed using the landscape preference ratio PR suggested and used by Mills and Biggs (1993):

$$PR = U/A$$
 (5)

where U = utilization = U_h/U_t, U_h – number of leopard scats found in a specific belt, U_t – number of scats found in all belts. A = availability = A_h/A_t, A_h – area of specific belt within the study area, km², A_t – area of all belts within the study area, km². The landscape belt having the highest PR value was identified as "critical habitat" (Maehr, 1997). The leopard distribution area was identified as the area encompassing all scat and track sites found by us, as well as the recent and current leopard sightings documented in Khorozyan (1999) and Khorozyan (2001a). The map of leopard distribution and habitat use is shown in Fig. 7.

The "edge effect" (Woodroffe and Ginsberg, 1998) was measured in terms of the ratio reserve perimeter/reserve area for all five districts taken from our GIS map as individual polygons and presented in Table 2. 1999; Okarma et al., 1997; Oli, 1994; Stander et al., 1997; Walker, 1994). Процентная доля самцов, самок и молодых всзоаровых козлов в общей потребленной живой вномассе (Bi) леопардами в Хосровском заповеднике были взяты из табл. 1.

5. Пищевая конкуренция

Іїнщевой состав фекалий медведей н рысей определялся так же, как и в экскрементах леопарда, по вышеуказанному уравнению 1 и сравнивался с питанием леопарда по уравнению 4, предложенному Slobodchikoff and Schulz (1980) и успешно использованному на практике (Ray and Sunquist, 2001). Среди объектов, найденных в фекалиях медведей, только те, что выли обнаружены и в экскрементах леопарда, определялись таксономически.

$$LP = F_{Li} F_{Pi} / [(F_{Li})^2 (F_{Pi})^2]^{1/2}$$
 (4)

где LP – индекс перекрывания пищевых ниш между леопардом (L) и другими хищниками (P), FLi и FPi - частоты встречаемости пищеного объекта і в фекалиях леопардов и хищников, соответственно. Индекс варьирует от 0 (полная пищевая изоляция) до 1 (идентичность пищевых ниш).

6. Распространение и использование местообитаний.

Географические координаты и высота местонахождения всех экскрементов и следов леопарда определялись в мае-июле 2002 г. с помощью спутникового навигатора Magellan 310 GPS (Magellan Corp., San Dimas CA, США) и наносились на ГИС карту ландшафтов Хосровского заповедника, созданную в Центре эколого-ноосферных исследований, Армения на вазе программы ESRI ArcView® GIS 3.2a (licensed to Ecocenter, product ID 843171107035). Распределение экскрементов по высотным ландшафтным поясам в Хосровском заповеднике определялось с использованием степени

предпочитаемости ландшафтов PR, вредноженной и использованной Mills and Biggs (1993):

$$PR = U/A \tag{5}$$

где U = использование = U_h/U_l , $U_h -$ количество экскрементов леоларда, найденных в данном поясе, U_t – количество экскрементов во всех поясах. А = доступность = Ah/At, Ah - площадь данного пояса в пределах области исследования, км², A₁ площадь всех ноясов в пределах области исследования, км². Ландшафтный пояс с наивысшей величиной PR принимался за "ключевое местоовитание" (Maehr, 1997). Область распространения леопарда была определена как область, включающая в себя все места экскрементов и следов, обнаруженных нами, а также недавних и текущих встреч с леопардами, задокументированных Khorozyan (1999) и Khorozyan (2001а). Карта распространения и использования местоовитаний леопарда показана на рис. 7.

"Краевой эффект" (Woodroffe and Ginsberg, 1998) выл измерен в виде соотношения периметр/площадь территории заповедника для всех пяти урочиц, взятых из нашей ГИС карты как огдельные полигоны, и представлен в тавл. 2.

Table 2. The "edge effect" in Khosrov Reserve as measured by the reserve perimeter/area ratio. The "edge effect" ranking: H - high, M - medium.

Табл. 2. "Краевой эффект" в Хосровском заповеднике, измеренный в виде соотношения периметр заповедника/площаль территории. Ранжирование "краевого эффекта" по степени действия: Н – сильный, М – средний.

Reserve district урочище	Reserve perimeter, km периметр	Reserve area, km ² территория	Perimeter/area ratio, km ⁻¹ соотношение перимстр/ территория	"Edge effect" ranking ранжирование "красвого эффскта"
Garni				
Гарни	46.3	33.1	J.40	н
Khachadzor				
Хачалзор	39.1	30.9	1.26	II
Urtsadzor Урцадзор	31.8	25.7	1.24	н
	51,0	25.7	1.27	
Khosrov Хосров	82.7	92.4	0.89	Н
Western				
Западный	49.1	76.5	0.64	м
Total				
Итого	249.0	258.6	0.96	Н

RESULTS

1. Feeding habits

The bezoar goats makes the bulk of the loopard dict, as estimated by Fi (91.5%, Fig. 4) and Bi (92.5%, Table 1). Female bezoars are most frequently occurring in the leopard scats (45.3%), followed by males (27.2%) and juveniles (19.0%) (Fig. 4). In respect to their significant live body mass, the bezoars of different sex/age categories make only 7.4-14.2% (total 31.2%) of all prey killed in numbers, but contribute 16.4-45.1% (total 92.5%) of total live biomass consumed (Table 1) and can be considered as a staple food resource for local leopards. The role of alternative prey species, namely wild boar

РЕЗУЛЬТАТЫ

1. Питание

Безоаровые козлы составляют подавляющую часть нитапия леопарда, согласно оценке Fi (91.5%, рис. 4) и Bi (92.5%, табл. 1). Самки безоара наиволее часто встречаются в экскрементах леопарда (45.3%), за ними пдут самцы (27.2%) и молодые особи (19.0%) (рис. 4). Ввиду их достаточной массы тела, безоаровые козлы различных половозрастных категорий составляют только 7.4-14.2% (итого 31.2%) всех жертв по численности добытых особей, по 16.4-45.1% (итого 92.5%) всех жертв по овщей потребленной живой виомассе (табл. 1) и могут рассматриваться (Sus scrofa), European hare (Lepus europaeus), rodents and buckthorn (Frangula spp.) berries, is negligible and can be ignored (Fi = 1-5.8% and Bi = 0.7-4.3%). The rodents are taken in the highest numbers of all prey killed, but their contribution to total live biomass consumed is insignificant (Table 1).

In Gami district, F_i of male bezoars taken by the leopards is the highest among all arcas studied by us (40.7%); F_i of females and juveniles makes 51.8% and 3.7%, respectively. The values they contribute to total live biomass consumed are similar ($B_i =$ 45%, 51.8% and 3.2%) (Fig. 5). In Khosrov district, the male, female and juvenile bezoars are almost equally taken ($F_i = 28.7-35.2\%$ and $B_i = 28.3-$ 34.9%). In Khachadzor district, just females are predominantly preyed upon ($F_i = 80.0\%$ and $B_i =$ 12.0%) and European hares become a significant part of the leopard diet ($F_i = 32.0\%$ and $B_i = 23.4\%$) (Fig. 5).

In the bezoar goats, contribution of the sex/age categories to total live biomass consumed by the leopards (B_i) has been strongly positively correlated with their frequency of occurrence in scats (F_i) according to equation $B_i = 0.915 F_i + 1.573 (r = 0.98, n = 12)$. This indicates a reliable and adequate representation of the role of the bezoar goats in the leopard diet by their occurrence in scats.

As shown on Fig. 6, in relation to sex/age structure of living population only female bezoars have been positively selected by local leopards (Ivley's selectivity index D varies from 0.09 in Khosrov district to 0.79 in Khachadzor district, with total mean 0.29). The male bezoars are selectively taken by leopards only in Garni district (D = 0.10), non-selected in Khosrov district (D = -0.09) and not taken at all in Khachadzor district (D - 0). As a result, total mean D for the male bezoars is 0.12. The juvenile bezoars are taken less than naturally available (not selected) in all study areas (D = -0.12-0.87, total mean -0.42). The difference between the area-specific and total D's of the male vs. female vs. juvenile bezoars was statistically significant (P < 0.05, n = 4).

как ключевой выд добычи для местных леонардов. Роль альтернативных видов жертв, а именно кабана (Sus scrofa), зайца-русака (Lepus europaeus), грызунов и ягод крушины (Frangula spp.), ничтожна и может не приниматься в расчет (F_i = 1-5.8% и B_i ·· 0.7-4.3%). Грызуны потребляются в наибольшем количестве, но их вклад в общую потребленную живую биомассу незначительна (табл. 1).

В Гарнийском урочние, F_i самцов везоара, изъятых деопардом, наивысшая среди всех областей, изученных нами (40.7%); F_i самок и молодых особей составляет 51.8% and 3.7%, соответственно. Их вклад в общую потребленную живую бномассу схож (B_i = 45.0%, 51.8% и 3.2%) (рнс. 5). В Хоеровском урочнице, самцы, самки и молодые особи добываются леонардом в равной мерс (F_i = 28.7-35.2% и B_i = 28.3-34.9%). В урочище Хачадор, добываются в основном самки всзоара (F_i = 80.0% и B_i = 12.0%) и зайцы-русаки становятся важной частью питания леопарда (F_i = 32.0% и B_i = 23.4%) (рис. 5).

У везоаровых козлов, вклад половозрастных классов в общую потревленную живую вномассу (B_i) имеет высокую положительную корреляцию с их частотой встречаемости в экскрементах (F_i) согласно уравнению B_i = 0.915 F_i + 1.573 (r = 0.98, n = 12). Это указывает на то, что встречаемость остатков козлов в экскрементах надежно и адекватно огражает роль данного вида довычи в питании леопарда.

Как показано на рис. 6, относительно половозрастной структуры живущей популяции Безоаровых козлов, только самки положительно извираются местными леопардами (индекс извирательности Ивлева D варьирует от 0.09 в Хосровском урочище до 0.79 в Хачадзоре, при общем среднем 0.29). Самцы всзоара извирательно довываются только в Гарнийском урочнще (D ---0.10), не извираются в Хосровском урочище (D = -0.09) и не добываются в Хачадзорс (D = 0). В результате, общий средний индекс D составляет -0.12. Молодые особи везоара добываются в меньшей мере, чем они сстественно доступны (не извираются) во всех областях (D = -0.12 - 0.87, овщий средний -0.42). Различия региональных (по урочищам) и общих величин D достоверно

2. Predator-prey relationships

According to different guesstimates, all suffering from some kind of subjectivity as based on "wordof-mouth reports" (Anonymous, 1998; Gasparyan and Agadjanyan, 1974; Kasabyan, 2001; Khorozyan, 1999; Lukarevsky, 2001b; Walker, 1994), no more than 10 leopards (adults, subadults and cubs) may supposedly live now in Khosrov Reserve and beyond within the study area of ca. 780 km². According to the mean values of daily prey consumption rate estimated in the leopard, 70 g meat/kg body wt/day (Goszczynski, 1986; Mizutani, 1999; Stander et al., 1997), body mass of the live leopard, 45 kg and the proportion of edible biomass in whole prey body mass, 75% (Mizutani, 1999; Oli, 1994; Stander et al., 1997), they will kill 15,330 kg of prey per annum. Based on information presented in Table 1, local loopards will kill 14,180 kg of the bezoar goats, including 4,752 kg of male bezoars, 6,914 kg of female bezoars and 2,514 kg of juveniles. In numbers, this biomass will translate to 128 males, 247 females and 168 juveniles, in total 543 individuals, removed by the leopards per year.

In the big cats living in prey-rich environments, the predator-prey ratio is 1:90 to 1:300 in numbers or biomass (Mizutani, 1999; Okarma et al., 1997; Oli, 1994), so the sufficient number of the bezoar goats for the leopards in Khosrov Reserve and beyond should make 900-3,000.

3. Feeding competition

The bears living in Khosrov Reserve are almost exclusive vegetarians, feeding on roots, fruits, berries and green biomass. Hence, the LP is negligible in the pair leopard-bear (0.013) caused by occurrence of buckthorn berries in several leopard scats found in winter. The lynx feed mainly on European hares

24

различались между самцами, самками и молодыми особями безоаров (P < 0.05, n = 4).

2. Взаимоотношения хищник-жертва

Согласно различным предварительным оценкам, которые страдают от субъективизма устной информации (Anonymous, 1998; Gasparyan and Agadjanyan, 1974; Kasabyan, 2001; Khorozyan, 1999; Lukarcvsky, 2001b; Walker, 1994), не волее 10 леопардов (взрослые и молодые особи и дстеныши) могут предположительно жить сейчас в Хосровском заповеднике и вокруг исго в пределах изученной области (около 780 км²). Согласно средним величинам суточной порции мяса, посдасмой леопардом, 70 г/кг веса тела/день (Goszczynski, 1986; Mizutani, 1999; Stander et al., 1997), веса тела живого леопарда, 45 кг и среднего соотношения съедовной виомассы к общему весу тела жертвы, 75% (Mizutani, 1999; Oli, 1994; Stander et al., 1997), они довывают 15330 кг довычи в год. На основе информации в табл. 1, местные леонарды довывают 14180 кг везоаровых. козлов в год, включая 4752 кг самцов, 6914 кг самок и 2514 кг молодых осовей. В пересчете на численность, эта вномасса составляет 128 самцов, 247 самок и 168 молодых, в общем 543 особи, которые изымаются леопардами в год.

У крупных кошек, живущих в экосистемах с вогатыми пищевыми ресурсами, соотношение хищник-жертва составляет от 1:90 до 1:300 в пересчете на численность или биомассу (Mizutani, 1999; Okarma et al., 1997; Oli, 1994), поэтому достаточное количество везоаровых козлов для леопардов на изученной территории должно составлять 900-3000 осовей.

3. Пищевая конкуренция

Медведи, живущие в Хосровском заповеляние, являются почти исключительными вегетарнанцами, питающимися корнями, плодами, ягодами и зеленой виомассой. Таким овразом, LP в паре леопард-медведь ничтожно мал (0.013) в результате встречаемости ягод крушины в and rodents and the $\Box P$ in the pair leopard-lynx is also insignificant (0.02) as a result of occurrence of European hare remains in several leopard scats.

4. Distribution and habitat use

As measured on our GIS map, our study area encompasses the following landscape belts: grass/forbs - 225.8 km² (29% of range) (elevations 1,600-2,300 m), subalpine grass/forbs - 180.0 km² (23%) (2,200-2,600 m), wormwood/ephemeral/grass - 173.8 km² (22%) (1,200-1,600 m), juniper/beech/oak sparse forest - 139.6 km² (18%) (1,400-2,300 m), alpine grass - 33.4 km² (4%) (2,600-2,800 m), wormwood/ephemeral - 22.6 km² (3%) (800-1,200 m) and permanent snowfields -9.3 km² (1%) (2,800-3,200 m).

The landscape preference ratio PR is distributed as follows: 3.0 for juniper/beech/oak sparse forests, 0.7 for wormwood/ephemeral/grass and grass/forbs and 0.4 for subalpine grass/forbs. So, the "critical habitat" is juniper/beech/oak sparse forest.

Distribution of leopard scats and tracks by elevations: Khachadzor – mean 2,164.5, SD = 320.8, n = 8; Khosrov – 2,074,0, SD = 154.0, n = 7; Garni – 1,441.1, SD = 234.6, n = 9.

DISCUSSION

1. Feeding habits

According to superficial surveys, in Armenia the leopards feed on the wild boars, bezoar goats, cattle, small livestock, dogs, hares, murid rodents and birds (Kasabyan, 2001). Present study, however, has shown that in Khosrov Reserve these predators feed overwhelmingly on the bezoar goats which are common throughout the leopard distribution area нескольких экскрементах леопарда, найденных нами зимой. Рысь питается в основном зайцамирусаками и грызунами и LP в паре леопарл-рысь также незначительна (0.02) в результате встречаемости остатков зайцев в нескольких экскрементах леопарда.

4. Распространение и использование местоовитаний

Измерения по ГИС картс показали, что в изученной нами области представлены следующие ландпафтные пояса: сухостепи - 225.8 км² (29% области) (высота 1600-2300 м шад у.м.), субальнийские луга - 180.0 км² (23%) (2200-2600 м), полынно-эфемерно-травянистые сообщества - 173.8 км² (22%) (1200-1600 м), можжевеловобуково-дубовые редколесья - 139.6 км² (18%) (1400-2300 м), альпийские луга - 33.4 км² (4%) (2600-2800 м), полынно-эфемерные сообщества - 22.6 км² (3%) (800-1200 м) и снежники - 9.3 км² (1%) (2800-3200 м).

Степень предпочитасмости ландшафтов PR распределяется следующим образом: 3.0 для мож жененово-буково-дубовых редколесий, 0.7 для полынно-эфемерно-травянистых и степных соовществ и 0.4 для субальпийских лугов. Таким образом, "ключевым местообитанием" является можжевслово-буково-дубовое редколесье.

Распределение экскрементов и следов леопарда по высотам и урочищам: Хачадзор – среднее 2164.5, SD = 320.8, n = 8; Хосров – 2074.0, SD = 154.0, n = 7; Гарии – 1441.1, SD = 234.6, n = 9.

ОБСУЖДЕНИЕ

1. Питание

Согласно обзорным исследованиям, в Армении леопарды питаются кабацами, везоаровыми козлами, крупным и мелким рогатым скотом, собаками, зайцами, мышевилными грызунами и птицами (Kasabyan, 2001). Настоящее исследование, однако, показало, что в Хосровском заповедникс эти хищники добывают в in this reserve and supply most of energy resources for these felids (Table 1, Figs. 4 and 5). Here, this predator-prey pair is strongly associated with cliffy and rocky highland habitats and local people have justly been naming the leopard "the goat shopherd".

The bezoar goats ideally meet all requirements of the leopards to the staple prey which are confined to prey availability, abundance, size, vulnerability, and behavioral response in a given place and time (Bothma et al., 1997).

Prey availability refers to the chances of encountering and successfully killing a specific prey while prey abundance influences the frequency of possible hunts, and both these characteristics are obviously high for the bezoar goats in Khosrov Reserve.

Prey size is important as it relates to the balance between energy expenditure and gain during the hunting process; the large carnivores, particularly leopards, are energy maximizers and prefer the prey that is most profitable in a given area and time. The range of body masses of the bezoar goats (22-46 kg) falls within the optimal modal prey size for the leopards (Johnson et al., 1993).

Prey vulnerability indicates the prey's ability to escape when targeted and it is another characteristic which may shape the hunting behavior of a predator. Terrain roughness of the leopard habitat in Khosrov Reserve provides abundant cover for successful hunting by stalking and/or ambushing what greatly increases prey vulnerability in this area, taking into account that the leopards may conceal themselves behind the cover as low as 20 cm (Bothma and le Riche, 1994a).

Prey response to predation is attributed to prey availability and may include either flight or aggression, and necessitates a predator to choose a right prey to achieve a successful hunt. The bezoar goats do not possess special anti-predator defense mechanisms and this adds to their availability and vulnerability.

All these characteristics of the bezoar goats do not change in seasons, making them the staple prey to local leopards all year round.

Among the sex/age categories of the bezoar goats, just adult females have been positively selected by leopards in all study areas of Khosrov Reserve, подавляющем большинстве именно безоаровых козлов, которые обычны по всей овласти распространения леопарда в заповеднике и вокруг него и дают большую часть энергии этим кошачьим (табл. 1, рис. 4 и 5). Здесь, эта пара хищник-жергва прочно связана со скалистыми и каменистыми высокогорными местообитаниями и местные жители справедливо называют леонарда "козым пастухом".

Безоаровые козлы идеально удовлетворяют веем тревованиям леопарда к ключевым видам довычи, которые сводятся к доступности, обилию, размеру, уязвимости и поведенческому ответу жертвы в данном месте и в данное время (Bothma et al., 1997).

Доступность жертвы отражает шансы встретить и удачно добыть конкретный вид добычи, тогда как обилие жертвы влияет на частоту возможных охот, и обе эти характернстики очевидно высоки для безоаровых козлов в Хосровском заповеллике.

Размер жертвы важен с точки зрения Баланса между энергетическими затратами и выгодами в процессе охоты. Крупные хищники, в частности, являются максимизаторами получаемой энергии и прелиочитают добычу, которая наиволее выгодна в данном месте и время. Размах массы тела Безоаровых козлов (22-46 кг) попадаст в пределы оптимального размера тела жертвы для леопарда (Johnson et al., 1993).

Уязвимость жертвы указывает на способность жертвы укежать при атаке и является еще одной характеристикой, формирующей охотничье поведение хищшика. Пересеченная местность местоовитаний леопарда в Хосровском заповеднике дает многочисленные укрытия для успешной охоты методом скрадывания и/или вспутивавия, что свльно увеличивает уязвимость жертв в данном регионе, если учесть что леопарды могут успешно скрадывать из-за прикрытия высотой всего 20 см (Bothma and le Riche, 1994а).

Ответ жертвы на хищничество относится к ее доступности и может включать в севя вегство или агрессивность, вынуждая хищника выбирать правильную довычу для успешной охоты. Безоаровые козлы не имскот специальных защитных механизмов, направленных против хищников, что увеличивает их доступность и whereas the juveniles are not (Fig. 6). The same trend is also found in the leopards living in Kopetdag mountains of Turkmenistan (Lukarevsky, 2001a).

Adult males are selectively taken by these big cats only in Gami district. Most likely, this is caused by the fact that the vicinities of Eranos Mt. (1,824.3m above sea level) where we collected all local scats have been used occasionally by one male as a marginal part of his home range: testimonies of local people and our ground track data (10.2±0.3cm 11.4±0.5cm, n = 6/1 track set, dirt, March 2001) prove this. Male leopards always take bigger prey than females do (Bothma et al., 1997). No female or subadult leopards are recorded here for quite a long time, possibly due to the lack of permanent water sources and safe breeding sites and high level of human disturbance (proximity to urban landscapes).

At an opposite point is Khachadzor district which lies in easternmost Khosrov Reserve and contains the most remote, wildest and the least disturbed habitats. According to information provided by local people, reserve rangers and our studies (recognition of individual animals and their movement patterns from their snow and ground tracks, unpubl.), the main part of the resident population of leopards must have been concentrating here and using it as a secluded breeding area. Here, we did not find any traces of male bezoar goats in the leopard seats and have noticed the predominant role of female bezoars and European hares in the leopard dict. Apparently, this indicates the preference of slender female goats and small wildlife by subadult and female leopards, especially when hunting with cubs.

The Khosrov district harbors many good habitats for safe existence of the leopards, but is not as pristine as the Khachadzor district, so it occupies the intermediate position and no preference for sex/age categories of the bezoar goats is found here.

The commonness of the bezoar goats in Khosrov Reserve makes the leopards to hunt on wild boars very infrequently (Table 1 and Fig. 4). In spite of their abundance in this protected area, local boars are quite aggressive and can retaliate viciously with making serious injury to an attacking leopard like it is observed elsewhere (Karanth and Sunquist, 1995; Ramakrishnan et al., 1999). Moreover, the уязвимость.

Все эти характеристики везоаровых кознов не изменяются по сезонам, что делает их ставильной ключевой довычей для местных леопардов в течение всего гола.

Средн половозрастных классов везоаровых козлов, только самки положительно извираются леопардом во всех областях Хосровского заповедника, изученных нами, тогда как молодые особи не избираются (рис. 6). Такая же тенденция обнаружена в горах Копетдаг Туркменистана (Lukarevsky, 2001а).

Взрослые самцы извирательно довываются леопардом только в Гарнийском урочище. Наиболее вероятно, это вызвано тем, что окрестности г. Ерапос (1824.3 м над у.м.), где мы нашли все провы экскрементов данного участка, перегулярно непользуются одним самцом леопарда в качестве краевого участка своей индивидуальной территории: показания местных жителей и наши данные по следам (10.2±0.3см 11.4 \pm 0.5см, n = 6/1 цепочка следов, грязь, март 2001 г.) доказывают это. Самцы леопарда всегда добывают более крупные жертвы, чем самки (Bothma et al., 1997). Ни самки леопарда, ни молодые особи не зарегистрированы здесь в течение достаточно продолжительного времени, возможно, ввиду отсутствия постоянных источников воды и везопасных мест для размножения и высокого уровня всспокойства со стороны человска (влизость к городским ландшафтам).

Противоположпостью этому является урочние Хачадзор, находящееся на самом востоке Хосровского заповедника, которос содержит наиболее отдаленные и дикие и наименсе поврежденные местоовитания. Согласно информации, предоставлениой нам местными жителями, лесничими заповедника и нашим исследованиям (распознавание отдельных особей и их передвижений по следам на снегу и грунте), здесь должна быть сосредоточена и размножаться основная часть резидентной популяции леопарла. Здесь мы не овпаружили остатков самцов везоара в экскрементах леопарда и отметили доминирующую роль самок везоара и зайцеврусаков в питании хищника. По всей видимости, boars screech loudly when threatened and force predators to stalk from a long distance (like the leopards do with any vigilant prey - Bothma et al., 1997) what is difficult in highly precipitous landscape of reserve. Apparently, local leopards are not motivated to hunt on this prey and lack special hunting tactics.

The input of small wildlife to the leopard diet in Khosrov Reserve is significant in numbers, but subtle in biomass input (Table 1 and Fig. 4) and occurring only when a predator moves from one "island" of its rocky habitat to another one through the sparse juniper forest or plateau grassland where the hares and rodents are plentiful.

We do not have a ground to speculate that small prey are actually much more frequently taken by leopards than detected from their scats. Traditionally, the rodents and other small mammals are believed to be consumed by large predators completely without leaving a trace in fecal material, what creates underestimation of the role of this prey in a predator's diet (Bothma and le Riche, 1994b; Karanth and Sunquist, 1995). However, we challenge applicability of this rule to Khosrov Reserve's leopards, as the undigested remains of rodents and European hares (hairs and pieces of skul), limbs, claws, ribs and backbone) were frequently found by us in wellpreserved condition in the scats of lynx. So, we suppose that local leopards act as typical energy maximizers and do not hunt specially on small wildlife, preferring high-caloric and available bezoar goats, but may take them opportunistically. это указывает на предпочтение изящных самок везоара и мелких животных молодыми особями и самками леопарла, особенно когда они охотятся с котятами.

Хосровское урочище содержит множество хороших местообитаний для везонасного существования леопарда, но оно не так первозданио, как Хачадзор, поэтому занимает промежуточное положение, и здесь нет предпочтения какому-либо определенному половозрастному классу безоаровых козлов.

Овычность везоаровых козлов в Хосровском зановеднике приводит к очень нечастым случаям добывания кабана местными леопардами (тавл. 1 и рис. 4). Несмотря на их обилие в заповеднике, каваны достаточно агрессивны и могут оказать ожесточенное сопротивление с причинением серьезных увечий атакующему леопарду, как это овнаружено в других местах (Karanth and Sunquist, 1995; Ramakrishnan et al., 1999). Кроме этого, каданы громко визжат при угрозе и вынуждают хищников скрадывать с длинной дистанции (как леонарды делают с лювой вдительной добычей -Bothma et al., 1997), что трудно осуществить в высокогорных условиях заповедника. Повидимому, местные леопарды не имеют стимула охотиться на данный вид добычи, и им недостает специальной охотничьей тактики.

Вклад мелких животных в питание леопарда в Хосровском заповеднике значителен с точки зрения численности, но вклад их виомассы мал (тавл. 1 и рис. 4) и имеет место только тогда, когда хищник передвигается от одного "острова" своего скалистого местообитания к другому через можжевеловое редколесье или сухостепь на плато, где зайцы и грызуны обильны.

У нас нет повода предполагать, что мелкие животные в действительности гораздо активнее довываются леопардом, чем это видно из содержимого их экскрементов. Традиционно считается, что грызуны и другие мелкие млекопитающие поедаются крупными хищниками полностью вез остатка в фекальном материале, что создает недооценку роли этого вида довычи в питании хищника (Bothma and le Riche, 1994b; Karanth and Sunquist, 1995). Однако, мы признасм ошивочность этого заключения в отношение

2. Predator-prey relationships

The leopards easily change food preferences when staple prey becomes less available and the studies of spatio-temporal dynamics of leopard diet may reliably indicate changes in prey populations (Ramakrishnan et al., 1999). In Khosrov Reserve, the bezoar goats are present in over 90% of the leopard scats and contribute more than 90% of total biomass consumed by these felids (Table 1, Figs. 4 and 5), indicating the sufficient and stable number of this staple prey for the carnivores. Now, we need to translate this information to the numbers of the bezoar goats which need to exist locally to remain a sufficient prey base for the leopards in this protected area as it is evident from dietary analysis of leopard scats.

It is hard to say precisely how many goats are living now in Khosrov Reserve, but obviously they stay common in all areas visited and studied by us as shown by numerous sightings of grouping animals (5-22 per group), abundance of kids and juveniles (on average, 2 per adult female), very frequent records of bezoar hoof tracks and pellets and as claimed by local people and rangers. This population is strictly resident and is insignificantly affected by such negative factors as poaching and livestock grazing. The wire leg and neck snares were found and dismantled by us several times set near the entrances of the caves where the goats rest, but they have very limited distribution and arc used principally in close proximity to human settlements (Garni district) so that to facilitate the snare checking for timely prey removal. The gun-shooting of the goats is not practiced as demanding substantial physical efforts from the poachers. Domestic livestock has been grazing in Khosrov Reserve in habitats other than used by the goats: cattle and horses graze mainly in riparian lowlands with lush vegetation and never reach the cliffy terrain where natural fodder is very scarce and animals can easily injure themselves or die, whereas the sheep graze in flocks on the alpine plateaus and do not leave far away from the shepherds' camps.

We have identified above that 900-3,000 bezoar goats should be living in our study area to remain the staple prey of leopards under our approximate леопардов Хосровского запонедника, поскольку пенереваренные части тела зайцев и грызунов (волосы, кусочки черела и конечностей, когти, ревра и позвонки) часто встречались нами в хорошо сохраненном виде в экскрементах рыси. Таким образом, мы полагаем, что местные леопарды действуют как типичные максимизаторы эпергии и не охотятся специально на мелких животных, предпочитая высококалорийных и доступных везоаровых коэлов.

2. Взаимоотношения хищник-жертва

Леопарды легко меняют пищевые предпочтения, когда ключевая добыча становится менее доступной, и исследование пространственно-временной динамики структуры питания леопарда может достоверно указывать на изменения в популяции жертвы (Ramakrishnan et al., 1999). В Хосровском заповеднике, безоровые козлы присутствуют в более чем 90% экскрементов леопарда и вкладывают волсе чем 90% овщей живой вномассы, потревляемой этими хищниками (тавл. 1, рис. 4 и 5), указывая на лостаточность и ставильное состояние этой ключевой довычи для хищников. Сейчас нам необходимо перевести эту информацию в численность везоаровых козлов, которая должна существовать в заповеднике, чтобы этот вид оставался ключевым видом жертвы для леопардов, как это очевилно из анализ содержимого экскрементов хищника.

Сейчас трудно сказать точно, сколько козлов живут сейчас в Хосровском заповеднике, но очевидно, что онн остаются обычными во всех урочищах, которые мы посетили и изучили, как видно из многочисленных встреч с группами этих животных (5-22 особей в группс), обилия козлят и молодых особей (в среднем, 2 на самку), очень частых паходок слелов копыт безоаров и их фекалий, и согласно информации местных жителей и лесничих. Эта популяция строго резидентна и пахолится под очень незначительным влиянием таких негативных факторов, как враконьерство и выпас скота. Проволочные лонушки были несколько раз обнаружены и guesstimate of carnivore numbers no more than 10 individuals. This information contradicts the published data that bezoar goat population numbers no more than 700 animals in all Armenia (Red Data Book of Armenian SSR, 1987) what urgently demands for in-depth up-to-date census of these ungulates in Khosrov Reserve and other regions of the country. Substantial scientific work will be needed to count the bezoars in reserve, especially in remote mountains of Khosrov and Khachadzor districts where the cores of goat and leopard populations exist and breed.

Another prospective research issue, and even more important than the bezoar census, is accurate estimation of the leopard numbers in Khosrov Reserve. The only feasible and cost-efficient technique to do that is to use camera photo-traps which may say us how many individuals are living now in reserve, of what sex/age composition their population is and where do they live (e.g., Karanth and Nichols, 1998). According to curvilinear relationship between the leopard numbers and study area (Smallwood, 2001), the range embracing Khosrov Reserve and adjacent areas could accommodate as many as 38 cats what is more than three time more than our guesstimate (10 individuals).

обезврежены нами установленными у входа в пещеры, где коэлы отдыхают, но они имеют очень ограниченное распространение и используются в основном вклизи от населенных пунктов (Гаринйское урочище), что овлегчает периодическую проверку ловушск и изъятие довычи. Отстрел везоаровых козлов не практикустся, поскольку он тревует значительных физических усилий от враконьеров. Домашний скот пасстся в Хосровском заповеднике в других местоовитаниях от ценользуемых козлами: коровы и лошади пасутся в основном в приречных низменностях с пышной растительностью и никогда не достнгают скал, где естественный корм скулси и животные легко могут получить увечье или погибнуть, тогда как овцы пасутся отарами на альпийских лугах и не отлучаются далеко от пастушьих лагерей.

Мы определили выше, что 900-3000 всзоаровых козлов должны жить в исследованной нами области, чтобы оставаться ключевой добычей лсопарда при нашей оценочной численности хищника не волее 10 особей. Эта информация противоречит опубликованным данным, что численность везоаровых козлов во всей Армении составляет не волее 700 осовей (Red Data Book of Armenian SSR, 1987), что тревует проведения серьезных исследований по современной оценке численности этих копытных в Хосровском заповеднике и других регионах респувлики. Потребуются значительные ваучноисследовательские работы по учету численности **Безоаров в заповеднике**, особенно в отдаленных горах урочны Хосров и Хачадзор где существуют и размножаются основные части популяций козлов и леопардов.

Еще одной перспективной областью исследования, и даже более важной, чем учет числешности безоарового козла, является определение численности леопарда в Хосровском заповеднике. Единственным реально осуществимым и экономичным способом является использование фото-ловушек, которые могут сказать, сколько особей живут сейчае в зановеднике, какова половозрастная структура их популяции и гле они живут (напр., Karanih and Nichols, 1998). Согласно криволинейному

3. Feeding competition

Analysis of food niche overlap in the pairs leopard-brown bear and leopard-Eurasian lynx shows that *P. pardus* completely separates from other local large predators in Khosrov Reserve by different pattern of habitat use: bears and lynx live in the sparse forests and dense thickets and leopards - in rocky massifs. Correspondingly, they take different prey: the bears are almost exclusive vegetarians, the lynx prey on hares and rodents and the leopards take the bezoar goats. Actually, the physical traits of the leopard makes it an exclusive bezoar-taker in its precipitous and rocky ecosystem in Khosrov Reserve: cunning, strength and exceptional climbing skills of this predator leave no chances to other big carnivores that occasionally visit this habitat to compete for this prey.

The gray wolves (*Canis lupus*) do not act as the principal competitors to the leopards, as they are concentrated in areas where domestic livestock graze and prey principally on calves, sheep and foals, as well as on wild boars. The only overlap occurs over feeding on small mammals (rodents and European hares) between the leopards and the lynx when the leopards pass through the typical lynx habitat (combination of open grasslands and dense thickets, mainly junipers, on the ridge tops) and take the small mammals opportunistically; despite the lynx are quite common in Khosrov Reserve, they are unlikely to play a serious role of feeding competitors to the leopard.

Kasabyan (2001) considers the birds of prey, such as the bearded vulture (*Gypaetus barbatus*), griffon (*Gyps fulvus*), black vulture (*Aegypius monachus*), golden eagle (*Aquila chrysaetos*) and black raven (*Corvus corax*) as feeding competitors to the leopards in Armenia. These birds of prey are fairly common within the rocky habitat in Khosrov Reserve and can potentially steal or compete for the leopard kills, but we neither witnessed nor heard отношению между численностью леопарда и исследованной территорией (Smałlwood, 2001), ареал включающий в севя Хосровский заповедник п прилегающие земли мог вы солержать 38 осовей, что волее чем в три раза кольше, чем наша оценка численности (10 осовей).

Пищевая конкуренция

Анализ перекрывания пищевых ниш в парах леопард-медведь и леопард-рысь показывает, что P. pardus полностью изолирустся от других крупных хищников Хосровского заповедника различным использованием местоовитаний; медведи и рыси обитают в редколесьях и густых зарослях, а леопарды - в скалистых массивах. Соответственно, они питаются различными овъектами: медведь ночти неключительный вегстарианец, рысь питастся зайцами и грызунами, а леопард – везоаровыми козлами. Действительно, физические черты леопарда делают сго всключительным охотником за везоарами: коварство, сила и чрезвычайно развитая способность к лазанию не оставляет шансов другим крупным хищникам, иногда посещающим его местообитания, соперничать за эту добычу.

Серые волки (Canis lupus) не являются конкурентами леопарду, поскольку они концентрируются в областях где выпасается скот и охотятся в основном на телят, овец и жеревят, а также на каванов. Церекрывание инш случается только относительно мелких млекопитающих (грызуны и зайцы-русаки) между леонардом и рысью когла леопард пересекает типичное местоовитание рыси (сочетание открытых стелей и густых зарослей, в основном можжевельника, по гревням хревтов) и довывают мелких животных при улобном случае; несмотря на то, что рысь достаточно обычна в Хосровском заповеднике, она не может играть серьезную роль пищевого

^{*} The equation is $\log N = -0.76 + 0.81 \log A (N - \text{leopard} numbers, individuals and A - study area, km²; n = 43; r² = 0.79, P < 0.0001). In our case, we took A = 780.0 km² as estimated in this paper.$

^{*} Уравнение log N = -0.76 + 0.81 log A (N ·· численность леонарда, особы и A – исследованная территория, км²; n = 43; r² = 0.79, P < 0.0001). В нашем случае, мы припяли A = 780.0 км² как определено в данной публикации.

from locals about this. In the only work that describes the interactions between the leopards and large birds of prey, Norton and Henley (1985) conclude that no one of four reasons of black vulture (Aquila verreauxii) attacks on these felids (hunting for food, piracy, nest defense and food competition) is fully explaining and the simple anti-predator reaction may be the most possible cause.

4. Distribution and habitat use

Mapping is a very efficient tool of studying territorial species, particularly carnivores (Sutherland, 2000), and we have seen that in our leopard study in Khosrov Reserve. The area studied by us (ca. 780 km^2) is three times larger than Khosrov Reserve itself (258.6 km^2) what makes inevitable the leopard movements outside the protected area and clashes with rural people. This makes the meaning of the "edge effect" which is described below and presents the highest threat to survival of local leopards (Fig. 7).

In our study, we put special attention to identification of the "critical habitat" as described by Machr (1997): "the specific area within the geographical area occupied by the species on which are found those physical or biological features (1) essential to the conservation of the species and (2) which may require special management considerations or protection". As such are functioning the juniper/beech/oak sprse forests with precipitous cliffy outcrops growing along the ridge tops which provide abundant prey (bezoar goats and European hares), shelter and watch-posts for spotting the prey grazing beneath in the bottom of canyon. Domination конкурента леопарда.

Kasabyan (2001) рассматривает хищных птиц, напр. вородача (Gypaetus barbatus), велоголового сипа (Gyps fulvus), черного грифа (Aegypius monachus), Беркута (Aquila chrysaetos) и черного ворона (Corvus corax) как пищевых конкурситов леопарда в Армении. Эти птицы достаточно овычны в скалистых местообитаниях Хосровского заповедника и могут потенциально похищать или соперничать за добычу леопарда, но мы никогда не выли свидстелями и не слышали от местных жителей ов этом. В слинственной равоте. посвященной взаимоотношениям леонарда и крупной хищной итицы, Norton and Henley (1985) заключили, что ни одна из четырех причин атак черного грифа (Aquila verreauxii) на эту кошку (охота за довычей, пиратство, защита гнезда и пищевая конкуренция) не объясняет враждевного поведения и напьолее возможной причиной может выть простая реакция защиты от хищника.

Распространение и использование местообитаний

Картирование является очень эффективным инструмситом в изучении территориальных видов,в частности хищников (Sutherland, 2000), и мы убедились в этом в нашем исследовании леопарда в Хосровском заповеднике. Исследованная нами территория (около 780 км²) в три раза овширпее, чем сам Хосровский заповедник (258.6 км²), что делает неизбежным передвижение леопарда за пределы охраняемой территории и контакт с сельским населением. Это составляет суть "красвого эффекта", который описан ниже и представляет собой наибольшую угрозу выживанию местных леопардов (рис. 7).

В нашем исследования, мы уделили отдельное внимание определению "ключевого местоовитания" в том виде, как оно описано Machr (1997): "отдельный участок в пределах географической овласти, занятой видом, на котором обнаружены физико-виологические условия (1) необходимые для охраны вида и (2) которые могут потребовать специальных управленческих рассмотрений или охраны". Как of this landscape belt over three other landscapes used by these felids (wormwood/ephemeral/grass, grass/forbs and subalpine grass/forbs) is significant and obvious both statistically (see distribution of PR's in Results 4. Distribution and habitat use) and visually in the field.

There is some evidence of relationship between the frequency of scat occurrence in environment and population density of the felids responsible for these scats which can indicate how often/seldom the animal visits a site where the seats are found (Lucherini et al., 1999; Ramakrishnan et al., 1999). However, our experience shows that the scat sampling efficiency cannot be used as a reliable indicator of the predator presence/absence, as it is very sensitive to factors unrelated to animal behavior (hard or no accessibility of most habitats to scientists, unfavorable weather conditions and unpredictable chance to find a leopard path with laid scats) and varies greatly with study areas and seasons. For example, in our case the lowest sampling efficiency was found in Khachadzor district (see Material and Methods 2. Collection of scats) as a result of two trips being undertaken in a very snowy time when no scats were found by us, but other two trips produced relatively good yields of scats on the snowmelt ground (8 and 17 samples). Meanwhile, this district is the most rugged and hardly accessible and contains most of local surviving leopard population. In the same winter trips which gave no scats, we found many legible snow tracks produced by at least one adult male (9.8±0.4cm 10.4±0.5cm, n = 12/1 track set, dirt, January 2002; 10.2±0.5cm 11.3 ± 0.4 cm, n = 3/1 track set, snow, January 2002) and one adult female leopards (8.2±0.2cm 7.0 ± 0.2 cm, n = 9/1 track set, snow, November 2001; 7.7 ± 0.5 cm 7.5 ± 0.4 cm, n = 15/1 track set, snow, January 2002; 7.6±0.4cm 7.8±0.6cm, n = 8/1 track set, dirt, January 2002) in localities Akhsoo/Chardakhloo canyon, Kandzaki Kar ridge and Ibishi Kar cliff of this district. This gives some indirect indication of intensified movements of these carnivores in winter when they mate and breed in Khosrov Reserve.

Almost all leopard scats (94.6% of all) that we found in Khosrov Reserve were laid at the trails trampled down by the bezoar goats. Obviously, local такоными являются можжевелово-вуководувовые редколесья с отвесными скалистыми выходами пород, растущие вдоль гребней хребтов и лающие обильную довычу (везоаровые козлы и зайцы-русаки), увежища и смотровые пункты для обнаружения довычи, пасущейся внизу в ущелье. Доминирование этого ландшафтного пояса над тремя другими ландшафтиого пояса над тремя другими ландшафтами, используемыми этими кошками (полыпноэфемерно-травянистые сообщества, степи и сувалынийские луга) значительно и очевидно как статистически (см. распределение PR в разделе Результаты 4. Распространение и использование местообитаций), так и визуально в полевых условиях.

Есть нскоторые доказательства взаимоотношений между встречаемостью экскрементов в окружающей среде и плотностью популяции кошачьих, отложивших эти экскременты, которые могут указать насколько часто/редко животное посещает место, где овнаружены фекалии (Lucherini et al., 1999; Ramakrishnan et al., 1999). Однако, наш опыт показывает, что эффективность провоотвора экскрементов не может выть использована в качестве надежного ипликатора присутствия/отсутствия хищника, поскольку она чрезвычайно чувствительна к факторам не относящимся к поведению животного (труднодоступность или недоступность вольшинства местообитаний для исследователей, невлагоприятные погодные условия и непредсказуемая вероятность обларужения тропы леопарда с отложенными фекалиями) и она очень варынрует по местам исследования и сезонам. Например, в нашем случае панменьшая эффективность пробоотбора выла обнаружена в урочище Хачадзор (см. Материалы и методы 2. Свор экскрементов) в результате двух экспедиций, предпринятых в очень снежное время когда ни одной провы не выло обнаружено, по остальные две поездки дали сравнительно хороший "урожай" проб на оттаявшей земле (8 и 17 проб). В то же время, это урочище является нанболее скалистым и труднодоступным и содержит волыную часть местной популяции леопарда. Во время тех же самых зимних поездок, которые не дали нам проб leopards perform regular "inspection raids" through the same movement corridors within their home ranges and produce scats along the trails to provide olfactory signals to conspecifics about themselves. Stretching over the ridge tops, these trails allow the leopards to move the long distances in quite short time and easily spot the prey grazing beneath; these trails are very straightforward and conservative in pattern. This opposes the study of Bothma and le Riche (1994b) which shows that the leopards of South Africa's Kalahari desert and Sri Lanka defecate randomly in space and do not use scats for scentmarking of their territories. However, the marginal parts of distribution area, like Eranos Mt. in Gami district, are inspected by the leopards irregularly as we never found the fresh moist scats with strong smell and mucous envelope in this area like we found in Khosrov and Khachadzor districts which are apparent "core" parts of the range.

As Kasabyan (2001) notes, the average distance moved by individual leopards in Armenia makes 35-40 km. This seems to be true also for Khosrov Reserve.

The principal problem faced by the leopard distribution in Khosrov Reserve is severe fragmentation of its territory into five isolated and relatively small districts (Figs. 1 and 7) which cannot prevent these highly mobile carnivores from movements in and out of reserve. All this confirms the statement by Woodroffe and Ginsberg (1998) that the most serious threat to existence of the large mammalian predators inside protected areas is the "edge effect" meaning their increased chances to be killed by rural people along the reserve borders when moving out the safety zones, and that these chances are directly proportional to the ratio reserve perimeter/reserve area. In Khosrov Reserve, the "edge effect" is significant due to its fragmentation, high values of perimeter/area ratios in those districts where the leopards permanently live (Garni, Khachadzor and Khosrov) (Table 2), relatively high proportion of rural population to all (66.5%) and high human density (144 people/km²) in Ararat Province where the reserve is located (Khorozyan, 1999).

экскрементов, мы овнаружили множество четких следов на снегу, отпечатанных как мниммум олним вэрослым самцом (9.8±0.4см 10.4±0.5см, n = 12/1 цепочка следов, грязь, январь 2002 г.; 10.2±0.5см 11.3±0.4см, n = 3/1 цепочка следов, снег, январь 2002 г.) и олной вэрослой самкой (8.2±0.2см 7.0±0.2см, n = 9/1 цепочка следов, снег, ноябрь 2001 г.; 7.7±0.5см 7.5±0.4см, n = 15/1 цепочка следов, снег, январь 2002 г.; 7.6±0.4см 7.8±0.6см, n = 8/1 цепочка следов, грязь, январь 2002 г.) в ущелье Ахсу/Чардахлу, хр. Кандзаки Кар и у скалы Ивиши Кар. Это косвенно указывает на более активные передвижения хищников зимой, когда они спариваются и размножаются в Хосровском заповедникс.

Почти все экскременты леонарда (94.6% от всех) обнаруженные нами в Хосровском заповеднике выли отложены на тропах вытоптанных всзоаровыми козлами. Очевидно, местные леонарды осуществляют регулярные "инспекционные рейды" по одним и тем же коридорам в пределах своих индивидуальных территорий и оставляют экскременты вдоль трои в качестве источника обонятельной информации для других осовей. Пролегающие вдоль гревней хревтов, эти тропы позволяют кошкам проходить длинные расстояния за достаточно короткое время и легко определять жертву, пасущуюся вниз по склону; эти тропы очень прямолинейны и консервативны по структурс. Это противорсчит исследованию Bothma and le Riche (1994b), которое показывает, что леопарды пустыми Калахари в Южной Африке и в Шри Ланке испражняются пространственно случайно и не используют фекалии для мечения территории запахом. Однако, краевые участки арсала, напр. г. Еранос в урочище Гарни, исследуются леопардами нерегулярно, поскольку мы никогда не находили здесь свежих влажных экскрементов с сильным запахом и слизистой оболочкой какие мы неоднократно находили в урочищах Хосров и Хачадзор являющихся очевидным "ядром" ареала.

Как отмечает Kasabyan (2001), среднее расстояние проходимое отдельными леопардами в Армении составляет 35-40 км. По-видимому, это справедливо и для Хосровского заповедника.

5. Implications for conservation

Food resources are sufficient and exclusive for the leopards in Khosrov Reserve and the principal factor threatening their survival is the "edge effect" defined above and confined to the lack of space and poverty-driven low level of public awareness in ambient rural areas. Here, it would be reasonable to discuss both these issues separately.

5a. Lack of space

There are three measures to minimize this limitation for local leopards: 1. Acquisition of surrounding agricultural lands for enlargement of existing protected area; 2. Maintenance of natural corridor(s) linking Khosrov Reserve with southern Armenia through which the leopards and other wildlife could move, principally Noravank Canyon; and 3. Stringent control of the status of the "buffer zones" fringing the reserve border.

Based on a cursory research, it was concluded that 2-3 leopards may live now in the Noravank Canyon and provide immigrants for the replenishment of population in Khosrov Reserve (Lukarevsky, 2001b).

The second option is much more affordable to Armenia than the first one because the country experiences lack of potentially arable lands and cannot set aside large tracts of habitats as strictly protected, but is able to curtail human activities in certain areas of limited value for keeping them as wild as possible to be used by wildlife as corridors. As studied in cougar (*Puna concolor californica*) and Florida panther (*P.c. coryi*) in USA, such corridors running through the human-dominated landscapes greatly facilitate the cat movements and significantly reduce the chances of a population to run down to extinction even if it is very small (Beicr, 1993; Maehr, 1990).

Uncertainty of the status and distribution of the "buffer zones" is among the biggest problems of Khosrov Reserve today, aggravated by the absence of the landmarks indicating protected areas forbidden for human activities. In practice, rural people may lend the land plots along the reserve border and use

Принципиальной провлемой распространсния леопарда в Хосровском заповеднике является резкая расчлененность его территории на пять изолированных и достаточно небольших урочищ (рис. 1 и 7), которые делают неизвежными передвижения этих очень подвижных хищников внутрь и за пределы заповедника. Все это подтверждает утверждение Woodroffe and Ginsberg (1998), что наквольшей угрозой существованию крупных млекопитающих хищников в охраняемых территориях является "краевой эффект" означающий повышенную вероятность выть застреденным сельскими жителями вдоль границы заповедника при выходе из зоны везопасности, и эта вероятность прямо пропорциональна соотношению перимстр/площадь территории заповедника. В Хосровском заповеднике, всличина "краевого эффекта" значительна ввиду его расчлененности, высокого показателя соотношения перимстр/площадь в тех урочищах, где леонарды постоянно обитают (Гарии, Хосров и Хачадзор) (тавл. 2), относительно высокой доли сельского населения к общему (66.5%) и высокой плотности населения (144 человска/км²) в провинции (марзе) Арарат, где и расположен Хосровский заповедник (Khorozyan, 1999).

Охрашные меры

Пищевые ресурсы достаточны и неключительны для леопарда в Хосровском заповеднике и основным фактором, угрожающим его существованию, является "краевой эффект" который сводится к недостатку пространства и низкому уровню информированности сельского населения. Здесь было вы целесоогразно обсудить обс эти проблемы по отдельности.

5а. Недостаток пространства

Существует три способа свести к минимуму это ограничение для местных леопардов: 1. Приобретение смежных сельскохозяйственных земель для расширения существующей территории them for whatever purposes (animal husbandry, erop cultivation, orchards, fishery or apiculture) and their cattle, horses and sheep graze freely beyond the plots in the reserve itself. As said above, livestock does not present a negative factor to the loopard prey, but the shepherds and their dogs can potentially disturb the predators when passing through the leopard tails.

5b. Poverty and low public awareness

Apart from the shepherds and their livestock who are present most of the year and even in winter, Khosrov Reserve has been frequently trespassed in late spring-mid-fall season by individual poor villagers who harvest herbs, wild fruits, mushrooms and berries and shoot small wildlife, principally hares and chukars (Alectoris graeca), for food. Like elsewhere, trespassers are mainly young men living in villages situated close to reserve (Nepal and Weber, 1995), predominantly Garni, Vedi and Urtsadzor. In November-December, dead wood biomass has been collected and distributed among the reserve rangers for household heating purposes. The reserve directorate mobilizes all its available resources to curb unauthorized visitations and control that no live trees are cut and no harvested wood is sold for making profit, but its extant capacities are limited. However, relentless and devoted conservation efforts result in a relatively good status of Khosrov Reserve if to compare it with other protected areas of Armenia where conservation measures are actually nil.

As the leopards are nocturnal, tolerant and cryptic, the innocent trespassers who do not hold firearms (e.g., gatherers) do not present a threat of physical destruction to these carnivores. However, any intrusion will shift the ranges of the bezoar goats towards the safer places and the leopards, which are strictly territorial, might have been lacking staple prey in spite of total bezoar numbers remaining high and stable.

What is essentially needed for the leopard conservation in Khosrov Reserve is to conduct the following kinds of activities: 1. Development of ecotourism, ecodevelopment projects (e.g., marketing заповедника; 2. Поддержание существующих коридоров, связывающих Хосровский заповедник с южной Арменией, по которым передвигаются леопарды и другие виды животных, в основном Нораванкское ущельс; и 3. Строгий контроль за состоянием "Буферных зон", расположенных вдоль границ заповедника.

На основе беглого исследования, было заключено, что 2-3 леопарда могут жить сейчас в Нораванкском ущелье и служить потсициальными иммигрантами для пополнения популяции в Хосровском заповеднике (Lukarevsky, 2001b).

Второй вариант гораздо волее приемлим для Армении, чем второй, поскольку страна испытывает острый недостаток потенциально используемых земельных ресурсов и она не может выделить вольшие участки земли в качестве охраняемых территорий, по спосовна минимизировать антропогенную деятельность в определенных малоценных участках чтовы сохранить их в наиболее нетронутом состоянии в качестве коридоров для передвижения животных. Исследования пумы (Puma concolor californica) и флоридской пумы (P.c. coryi) в США показали, что такие коридоры простирающиеся через антропогенные ландшафты очень способствуют передвижениям животных и сильно уменьшают шансы популяции на вымирание, даже если она и очень мала (Beier, 1993; Machr, 1990).

Неопределенность положения и распределения "вуферных зон" является одной из самых насущных проблем Хосровского заповедника сегодня, что усугувляется отсутствием знаков обозначающих участки, запрещенные для непользования человеком. На практике, сельские жители могут арендовать участки земли вдоль границы заповедника и использовать их на свое усмотрение (животноводство, земледелие, фруктовые сады, рыководство или пчеловодство), а их скот и лошади свободно пасутся за пределами этих участков на территории самого заповедника. Как говорилось выше, скот не представляет совой отрицательный фактор для довычи ясопарда, но пастухи и их собаки могут беспоконть хищников при передвижении по тронам леонарда.

of local handicrafts) and protection enforcement programs, i.e. efforts oriented to creation of economic motivation for local villagers to avert them from using reserve's biological resources; and 2. Development of educational campaigns providing to local communities more knowledge about the leopard and ambient environment and thus raising public awareness about the value of this carnivore for nature and people (Khorozyan, 2001b). In more details, these measures were described carlier (Khorozyan, 2001b). Eventually, support for endangered species conservation will emerge when people believe this effort enhances the prospects of a materially, emotionally, and spiritually worthwhile life for themselves, their families, and their communities (Dinerstein, 1998).

5c. Additional conservation measures

A very important issue which may be crucial to the leopard conservation in Khosrov Reserve is wild fire. The junipers and other xcrophylic vegetation of local sparse forests contain minimum amounts of water in tissues and can burn down over the vast areas from a single dropped cigarette, match or piece of glass. Control and timely firefighting is extremely difficult in local mountains due to insufficient resources.

5в. Бедность и низкая информированность населения

Кроме настухов и их скота присутствующих вольшую часть года и даже зимой, граница Хосровского заповедника часто нарушается в период поздняя весна- ссредина осени отдельными сельчанами, собирающими съедобные травы, дикие фрукты, грибы и ягоды и стреляющими мелких животных, в основном зайцев-русаков и кекликов (Alectoris graeca), для пропитания. Как и в других местах, нарушители - это в основном молодые мужчины, живущие в деревнях близко от заповедника (Nepal and Weber, 1995), в основном Гарии, Веди и Урцадзор. В период нояврьдекабрь, совирается мертвая древесниа и распределяется среди работников заповедника для отопления в холодное время года. Директорат заповедника мовилизует все возможные ресурсы для обуздания исзаконных посещений и контроля того, чтовы не срувались живые деревья и собранная древесина не продавалась, по существующие мощности недостаточны. Однако, неустанные и преданные усилня по охране природы приводят к тому, что Хосровский заповедник находится в достаточно хорошем состоянии, если сравнить сго с другими охраняемыми территориями Армении где никаких природоохранных равот не проводится,

Поскольку леопарды ведут ночной и скрытный овраз жизни, нарушители, не имеющие с собой оружия (напр., сборщики трав), не представляют собой угрозы физического уничтожения хищников. Однако, любое вмешательство может привести к смещению области распространения безоаровых козлов в волее везопасные места, а лсопарды как сугубо территориальные животные Будут испытывать педостаток основной довычи при том, что общее количество козлов будет оставаться высоким и ставильным.

Совершенно необходимым для охраны леопарла в Хосровском заповеднике является осуществление следующих видов деятельности: 1. Развитие проектов экотуризма и экоразвития (напр., продажа ремесленных изделий местного производства) и программ усиления охранного режима, т.с. усилый, ориентированных на создание

ACKNOWLEDGEMENTS

This work would not be possible without the administrative boost of A. Aghasyan (Senior specialist, Ministry of Nature Protection of the Republic of Armenia) and S. Arevshatyan (President, Youth Ecological Group), logistical support of S. Shaboyan (Director, Khosrov Reserve) and general kindness of local rural people, and we sincerely thank them all for that. S. Abovyan (Director, Yerevan Zoo) and his staff provided invaluable assistance in our work with their male Persian leopard. Our gratitude extends to S. Asmaryan (Junior researcher, Center for Ecological Studies) for production of our GIS map and A. Saghatelyan (Director, Center for Ecological Studies) for permission to use it. M. Kalashyan (senior scientist, Institute of Zoology) provided great assistance in revision of manuscript. We also thank J. du P. Bothma (South Africa), C. Breitenmoser (Switzerland), P. Jackson (Switzerland), K.U. Karanth (India), M. Konopinski (Poland), D. Long (South Africa), V. Lukarevsky (Russia), D.S. Maehr (USA), M.G.L. Mills (South Africa), F. Mizutani (Kenya), S. Mukherjee (India), M.K. Oli (USA), M. Pizzetti (Italy), K. Schmidt (Poland) and M. E. Sunquist (USA) for providing valuable information referred to in this article. Ideas generated by the keen interest of M. Pizzetti to this work and our constant sharing of information have greatly improved the quality of the manuscript. O n r sincere thanks go to F. Rocca (President, Società Zoologica La Torbiera, Italy) for financial support of our research. The book by Sutherland (2000) was donated by The Conservation Handbook Gratis Copies Project, UK (REF: SUTH 1611).

экономической мотивация для местных жителей чтобы отвратить их от использования природных ресурсов заповедника; и 2. Разработка образовательных кампаний дающих местным сообществам вольше знаний о леонарде и окружающей среде и таким образом повышающих уровень информированности населения о ценности этого хищника для природы и людей (Khorozyan, 2001b). Более подровно эти меры выли описаны ранее (Khorozyan, 2001b). В конечном итогс, поддержка охраны вымирающих видов животных появится тогда, когда люди поверят, что эти усилия дают перспективу материально, эмоционально и духовно полноценной жизни для них самих, их семей и соовщества" (Dinerstein, 1998}.

5в. Дополнительные меры охраны

Очень важной проблемой, которая может выть решающей для охраны леопарда в Хосровском заповеднике, является пожар. Можжевельники и другая ксерофильная растительность местных редколесий содержат минимальное количество тканевой влаги и может полностью выгореть на общирной территории от сдинственной брошенной сигареты, спички и кусочка стекла. Контроль и своевременное тушение чрезвычайно затруднительны в местных горах ввиду недостаточности ресурсов.

БЛАГОДАРНОСТИ

Эта работа была бы невозможна без административной поддержки А. Агасяна (старший специалист, Министерство охраны природы Республики Армения) и С. Аребшатяна (председатель, Молодежная экологическая группа), технической помощи С. Шабояна (дпректор, Хосровский заповедник) и благожелательности местного населения, и мы ныражаем влагодарность им всем. С. Абовян (директор, Ереванский зоопарк) и его персонал оказали незаменимую поддержку в нашей равоте с их переднеазнатеким леопардом. Мы также

чрезвычайно признательны Ш. Асмарян (младший научный сотрудник, Центр эколого-ноосферных исследований НАН РА) за создание нашей ГИС карты и А. Сагателяну (директор, ЦЭНИ НАП РА) за разрешение на се использование. М. Калашян (старший научный сотрудник, Институт зоологии НАН РА) оказал вольшую поддержку при редактировании рукопнен. Мы также ылагодарим J. du P. Bothma (ЮАР), C. Breitenmoscr (Швейцария), Р. Jackson (Швейцария), К.U. Karanth (Индия), М. Копоріnski (Польша), D. Long (ЮАР), В. Лукаревского (Россия), D.S. Maehr (CIIIA), M.G.L. Mills (IOAP), F. Mizutani (Кения), S. Mukherjee (Индия), М.К. Oli (США), M. Pizzetti (Италия), K. Schmidt (Польша) and M. E. Sunquist (CIIIA) за предоставление ценной информации на которую мы ссылаемся в данной работе. Идеи, возникавние в результате острого интерсса M. Pizzetti к нашей равоте и наш постоянный обмен информацией внесли кольшой вклад в улучшение качества работы.

Мы очень влаголарны F. Rocca (Президент, Società Zoologica La Torbiera, Италия) за финансовую поддержку наших исследований. Книга Sutherland (2000) выла подарена в рамках проекта The Conservation Handbook Gratis Copies Project, UK (REF: SUTH 1611).

REFERENCES / ЛИТЕРАТУРА

Anouymous. 1998. Appendix. Boutyun 4: 6. Beier, P. 1993. Determining minimum habitat areas and

- habitat corridors for cougars. Conserv. Biol. 7: 94-108. Biodiversity of Armenia, 1999. First National Report.
- Ministry of Nature Protection, Yerevan. 126 p. Bloomgarden, C.A. 1995. Protecting endangered species
- under future climate change: from single-species preservation to an anticipatory policy approach. Envir. Manag. 19: 641-648.
- Bothma, J. du P. and E.A.N. lc Riche. 1994a. Quantifying woody plants as hunting cover for southern Kalahari leopards. J. Arid Envir. 26: 273-280.
- Bothma, J. du P. and E.A.N. le Riche. 1994b. Scat analysis and aspects of defecation in northern Cape leopards. S. Afr. J. Wildl. Res. 24: 21-25.
- Bothma, J. du P., N. van Rooyen and E.A.N. le Riche. 1997. Multivariate analysis of the hunting tactics of Kalahari leopards. Koedoe 40: 41-56.
- Dal, S.K. 1951. Data on biology, distribution, numbers and quantitative ratio in bezoar goat herds on the Urts ridge. Doki. AN ArmSSR, Biol. Selskokhoz. Nauki 4: 33-40.

Dinerstein, E. 1998. It takes a village. Zoogoer 27: 17-24.

- Gabrielian, E., B. Geilikman and A. Unanian. 1990. Khosrov Reserve, pp. 323-340. In V.E. Sokolov and E.E. Syroechkovsky (eds.). Reserves of the Cancasus. Mysl, Moscow.
- Gasparyan, K. and F. Agadjanyan. 1974. Panther in Armenia. Biol. Zh. Arm. 12: 84-88.
- Goszczynski, J. 1986. Locomotor activity of terrestrial predators and its consequences. Acta theriol. 31: 79-95.
- Grigorian, A. 2000. Armenia, pp. 7-21. In M.F. Price (ed.). Cooperation in the European Mountains 2: the Caucasus. IUCN, Gland and Cambridge.
- Johnson, K.G., W. Wei, D.G. Reid and H. Jinchu. 1993. Food habits of Asiatic leopards (Panthera pardus fusca) in Wolong Reserve, Sichuan, China. J. Mammal. 74: 646-650.
- Karanth, K.U. and J.D. Nichols. 1998. Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79: 2852-2862.
- Karanth, K.U. and M.E. Sunquist. 1995. Prey selection by tiger, leopard and dhole in tropical forests. J. Trop. Ecol. 64: 439-450.
- Kasabyan, M.G. 2001. The carnivorous mammals of Armenia. PhD dissertation, Inst. Zool., Yerevan, Armenia. 151 p.

Khorozyan, I. 1999. Leopard records in Armenia in the

1990s. Cat News 31: 13-15.

- Khorozyan, I. 2001a. The leopard in Caucasus and Armenia. Persian Leopard EEP 1999/2000, Munster Zoo, Germany.
- Khorozyan, I. 2001b. Human attitudes to the leopards in Khosrov Reserve, Armenia. Cat News 34: 14-17.
- Kohn, M.H. and R.K. Wayne. 1997. Facts from feces revisited. Trends Evol. Ecol. 12: 223-227.
- Lucherini, M., D. Sana and D. Birochio. 1999. The Andean mountain cat (Orcailurus jacobita) and the other wild carnivores in the proposed Anconquija National Park, Argentina. Sci. Rep. Zool. Soc. "La Torbiera" 5: 1-31.
- Lukarevsky, V. 2001a. The Leopard, Striped Hyena and Wolf in Turkmenistan. Signar, Moscow. 128 p.
- Lukarevsky, V. 2001b. The status of the leopard population in South Caucasus. Unpubl. report. WWF-Georgia Country Office, Tbilisi.
- Maehr, D.S. 1990. The Florida panther and private lands. Conserv. Biol. 4: 167-170.
- Maehr, D.S. 1997. The Florida panther and the Endangered Species Act of 1973. Env. Urban Issues 24: 1-8.
- Mills, M.G.L. 1992. A comparison of methods used to study food habits of large African carnivores, pp. 1112-1124. In D.R. McCullough and R.H. Barrett (eds.). Wildlife 2001: Populations, Elsevier Appl. Sci., London.
- Mills, M.G.L. and H.C. Biggs. 1993. Prey apportionment and related ecological relationships between large carnivores in Kruger National Park. Symp. Zool. Soc. Lond. 65: 253-268.
- Mizutani, F. 1999. Impact of leopards on a working ranch in Laikipia, Kenya. Afr. J. Ecol. 37: 211-225.
- Mukherjee, S., S.P. Goyal and R. Chellam. 1994. Standardisation of scat analysis techniques for leopards (Panthera pardus) in Gir National Park, Western India. Mammalia 58: 139-143.
- Nepal, S.K. and K.E. Weber. 1995. The quandary of local people-park relations in Nepal's Royal Chitwan National Park. Envir. Manag. 19: 853-866.
- Norton, P.M. and S.R. Henley. 1985. Black cagles "attacking" leopards. Bokmakierie 37: 114-115.
- Nowell, K. and P. Jackson. 1996. Wild Cats: Status Survey and Conservation Action Plan. IUCN, Gland. 382 p.
- Okarma, H., W. Jedrzejewski, K. Schmidt, R. Kowalczyk and B. Jedrzejewska. 1997. Predation of Eurasian lynx on roe deer and red deer in Bialowieza Primcval Forest, Poland. Acta theriol. 42: 203-224.
- Oli, M.K. 1994. Snow leopards and blue sheep in Nepal: densities and predator:prey ratio. J. Mammal. 75: 998-1004.
- Pikunov, D.G. and V.G. Korkishko. 1992. The Amur Leopard. Nauka, Moscow. 192 p.

- Ramakrishnan, U., R.G. Coss and N.W. Polkey. 1999. Tiger decline caused by the reduction of large ungolate prey: evidence from a study of leopard diets in southern India. Biol. Conserv. 89: 113-120.
- Ray, J.C. and M.E. Sunquist. 2001. Trophic relations in a community of African rainforest carnivores. Oecologia 127: 395-408.
- Red Data Book of Armenian SSR, 1987, Inst. Zool., Yerevan, 123 p.
- Slobodchikoff, C.N. and W.C. Schulz. 1980. Measures of niche overlap. Ecology 61: 1051-1055.
- Smallwood, K.S. 2001. The allometry of density within the space used by populations of mammalian Carnivora. Can. J. Zool. 79: 1634-1640.
- Stander, P., P.J. Haden, // Kaqeee and // Ghau. 1997. The ecology of asociality in Namibian leopards. J. Zool., Lond. 242: 343-362.
- Sutherland, W.J. 2000. The Conservation Handbook: Research, Management and Policy. Blackwell Sci. Ltd., London. 278 p.
- Walker, C. 1994. Khosrov Reserve: a Technical Report. Appal. State Univ., Boone. 60 p.
- Woodroffe, R. and J.R. Ginsberg. 1998. Edge effects and the extinction of populations inside protected areas. Science 280: 2126-2128.

INSTRUCTIONS FOR THE AUTHORS

The Scientific Reports of the Zoological Society "La Torbiera" publish reviews and original articles dealing with the conservation of fauna and habitats throughout the world.

Manuscripts should be typewritten (either in English or in Italian) on one side only and double-spaced on A4 paper; two copies should be submitted together with a floppy disk version. Non-Italian authors may submit only the English version, which will be successively translate into Italian by the editing staff. Format for text citations and literature cited should follow those used in the most recent issue of the *Reports*. The reference list should be in alphabetical order and include the full title of the article. Multiple citations must be placed in chronological order, most recent last. Only Latin names of genera and lower taxa must be underlined. Tables should be on separate pages and designated with Arabie numbers. Graphs or line drawings, either originals or photographic positives should be glossy, black-and-white whole-plate prints; good colour slides are also acceptable. Lettering must be large enough for legibility at 2/3 reduction. Black and white photographs or original slides must be accompanied by the name of the author and by a reference number. Figure captions should be typed on a separate page.

Submit the manuscript to: Società Zoologica "La Torbiera", 28010 Agrate Conturbia, Novara (Italy)

ISTRUZIONI PER GLI AUTORI

I Scientific Reports of the Zoological Society "La Torbiera" pubblicano lavori bibliografici ed articoli originali sulla conservazione della fauna e degli habitat nel mondo.

I manoscritti devono essere scritti a macchina (in inglese ed in italiano) su un lato solo c con interlinea 2 su un foglio formato A4; due copie devono essere inviate alla redazione insieme ad una versione su floppy disk. Gli autori non italiani possono inviare solo la versione inglese, che sarà successivamente tradotta a cura della redazione. Le citazioni nel testo e la bibliografia devono essere in accordo con quanto riportato nel più recente numero dei *Reports.* La bibliografia devo essere ordinata alfabeticamente e deve includere il titolo completo dell'articolo citato. Le citazioni multiple devono essere poste in ordine cronologico, le più recenti per ultime. Solo i nomi latini dei generi e dei taxa inferiori devono essere sottolineati. Le tavole vanno realizzate su un foglio a parte e contraddistinte da un numero arabo. I grafici ed i disegni al tratto, sia originali, sia positivi fotografici devono essere nitidi ed in bianco e nero; diapositive a colori di buona qualità sono anche prese in considerazione per la pubblicazione. Le lettere ed i numeri di accompagnamento devono essere grandi abbastanza da permettere una leggibilità con riduzione a 2/3. Le stampe in bianco e nero e le diapositive originali devono essere corredate del nome dell'autore e da un numero di riferimento. Le didascalie per le figure vanno riportate su un foglio a parte.

Inviare il manoscritto a: Società Zoologica "La Torbiera", 28010 Agrate Conturbia, Novara (Italia).